DOI QR코드

DOI QR Code

Characterization of Bacteriophages against Salmonella Gallinarum

Salmonella Gallinarum 박테리오파지의 특성

  • Kim, Minjeong (College of Veterinary Medicine, Kangwon National University) ;
  • Kwon, Hyuk-Moo (College of Veterinary Medicine, Kangwon National University) ;
  • Sung, Haan-Woo (College of Veterinary Medicine, Kangwon National University)
  • Received : 2017.08.20
  • Accepted : 2017.09.15
  • Published : 2017.09.30

Abstract

Bacteriophages are viruses that exclusively infect bacterial cells, and lytic bacteriophages can be used as a safe alternative to antibiotics for the prevention and treatment of animal diseases. In this study, we attempted to isolate and characterize bacteriophages for Salmonella enterica serovar Gallinarum (Salmonella Gallinarum), the causative agent of fowl typhoid in chickens. Ten bacteriophages were isolated from samples of sewage from seven poultry slaughterhouses. One of these isolate, designated as $SG{\Phi}-YS$ SP and classified in the family Myoviridae, produced plaques with seven Salmonella Gallinarum strains. However, no plaques were produced with any of the Salmonella enterica serovar Enteritidis strains tested, suggesting that this bacteriophage is Salmonella Gallinarum specific. To assess the lytic ability of $SG{\Phi}-YS$ SP against Salmonella Gallinarum, bacterial growth rates following inoculation of the bacteriophage were compared with the control. The $SG{\Phi}-YS$ SP treatment, with a multiplicity of infection of 10, reduced the growth of Salmonella Gallinarum by 2.21 log cfu/mL at 6 h, and 2.13 log cfu/mL at 9 h, suggesting that this bacteriophage isolate could be used for the prevention or treatment of Salmonella Gallinarum infection in chickens.

Acknowledgement

Supported by : 농림식품기술기획평가원(IPET), 강원대학교

References

  1. Ackermann HW 2006 Classification of bacteriophages. Pages 8-16 In: Bacteriophages. 2nd ed. Oxford University Press, NewYork, USA.
  2. Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R 2015 Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7(8):4836-4853. doi: 10.3390/v7082847 https://doi.org/10.3390/v7082847
  3. Barrow PA, Huggins MB, Lovell MA 1994 Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system. Infect Immun 62(10):4602-10.
  4. Berchieri A Jr, Lovell MA, Barrow PA 1991 The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res Microbiol 142(5):541-549. https://doi.org/10.1016/0923-2508(91)90187-F
  5. Chhibber S, Kaur T, Sandeep K 2013 Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS ONE 8:e56022. https://doi.org/10.1371/journal.pone.0056022
  6. Criscuolo E, Spadini S, Lamanna J, Ferro M, Burioni R 2017 Bacteriophages and their immunological applications against infectious threats. Journal of Immunology Research 2017: 3780697. doi: 10.1155/2017/3780697 https://doi.org/10.1155/2017/3780697
  7. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N 2017 A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruse 9(3):E50. doi: 10.3390/v9030050 https://doi.org/10.3390/v9030050
  8. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R 2017 Communication between viruses guides lysis-lysogeny decisions. Nature 541:488-493. https://doi.org/10.1038/nature21049
  9. Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisenb J 2013 Salmonella pathogenicity and host adaptation in chickenassociated serovars. Microbiol Mol Biol Rev 77(4):582-607. https://doi.org/10.1128/MMBR.00015-13
  10. Golkar Z, Bagasra O, Pace DG 2014 Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J Infect Dev Ctries 8:129-136.
  11. Grant Ar' Q, Hashem F, Parveen S 2016 Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiology 53(Pt B):104-109. doi: 10.1016/j.fm.2015.09.008 https://doi.org/10.1016/j.fm.2015.09.008
  12. Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ 2012 Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154(1-2):66-72. doi: 10.1016/j.ijfoodmicro.2011.12.023 https://doi.org/10.1016/j.ijfoodmicro.2011.12.023
  13. Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I 2012 Bacteriophages and their implications on future biotechnology: A review. Virol J 9:9. https://doi.org/10.1186/1743-422X-9-9
  14. Henry M, Debarbieux L 2012 Tools from viruses: Bacteriophage successes and beyond. Virology 434:151-161. https://doi.org/10.1016/j.virol.2012.09.017
  15. Hong SS, Jeong J, Lee J, Kim S, Min W, Myung H. 2013 Therapeutic effects of bacteriophages against Salmonella Gallinarum infection in chickens. J Microbiol Biotechnol 23(10):1478-1483. https://doi.org/10.4014/jmb.1304.04067
  16. Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA 1998 Prevalence of broadhost-range lytic bacteriophages of Sphaerotilus natans, E. coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64(2):575-580.
  17. Kang MS, Kim A, Jung BY, Her M, Jeong W, Cho YM, Oh JY, Lee YJ, Kwon JH, Kwon YK. 2010 Characterization of antimicrobial resistance of recent Salmonella enterica serovar Gallinarum isolates from chickens in South Korea. Avian Pathol 39(3):201-205. https://doi.org/10.1080/03079451003767261
  18. Koskella B, Meaden S 2013 Understanding bacteriophage specificity in natural microbial communities. Viruses 5(3): 806-823. https://doi.org/10.3390/v5030806
  19. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Jonson RP 2010 Enumeration of bacteriophage by double agar overlay plaque assay. Page 69-76 In: Bacteriophages. Volume 1: Isolation, Characterization, and Interactions. Humana Press, NY, USA.
  20. Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ 1999 Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol 65(9):3767-3773.
  21. Kwon HJ, Cho SH, Kim TE, Won YJ, Jeong J, Park SC, Kim JH, Yoo HS, Park YH, Kim SJ. 2008 Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar Gallinarum biovar Gallinarum. Appl Environ Microbiol 74(22):6970-6979. https://doi.org/10.1128/AEM.01088-08
  22. Kwon HJ, Kim TE, Cho SH, Seol JG, Kim BJ, Hyun JW, Park KY, Kim SJ, Yoo HS 2002 Distribution and characterization of class 1 integrons in Salmonella enterica serotype Gallinarum biotype Gallinarum. Veterinary Microbiology 89(4):303-309. https://doi.org/10.1016/S0378-1135(02)00257-2
  23. Lee SK, Chon JW, Song KY, Hyeon JY, Moon JS, Seo KH. 2013 Prevalence, characterization, and antimicrobial susceptibility of Salmonella Gallinarum isolated from eggs produced in conventional or organic farms in South Korea. Poult Sci 92(10):2789-2797. https://doi.org/10.3382/ps.2013-03175
  24. Lee YJ, Kim KS, Kwon YK, Tak RB 2003 Biochemical characteristics and antimicrobials susceptibility of Salmonella Gallinarum isolated in Korea. J Vet Sci 4(2):161-166.
  25. Lim TH, Lee DH, Lee YN, Park JK, Youn HN, Kim MS, Lee HJ, Yang SY, Cho YW, Lee JB, Park SY, Choi IS, Song CS. 2011 Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Dis 55(3):435-438. https://doi.org/10.1637/9599-111210-Reg.1
  26. Pallavali RR, Degati VL, Lomada D, Reddy MC, Durbaka VRP 2017 Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections. PLOS ONE 12(7):e0179245. doi: 10.1371/journal.pone.0179245 https://doi.org/10.1371/journal.pone.0179245
  27. Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A 2014 Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63(2):137-145.
  28. Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha A, Delgadillo I, Romalde JL, Nunes ML, Almeida A 2016a Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Res 220:179-192. doi: 10.1016/j.virusres.2016.04.020 https://doi.org/10.1016/j.virusres.2016.04.020
  29. Pereira S, Pereira C, Santos L, Klumpp J, Almeida A 2016b Potential of phage cocktails in the inactivation of Enterobacter cloacae - An in vitro study in a buffer solution and in urine samples. Virus Res 211:199-208. doi: 10.1016/j.virusres.2015.10.025 https://doi.org/10.1016/j.virusres.2015.10.025
  30. Schmelcher M, Loessner MJ 2014 Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4(1):e28137. Epub 2014 Feb 7. https://doi.org/10.4161/bact.28137
  31. Schuch R, Nelson D, Fischetti VA 2002 A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418(6900): 884-889. https://doi.org/10.1038/nature01026
  32. Shivaprasad HL, Barrow PA 2013 Pullorum disease and fowl typhoid. Pages 678-692 In: Diseases of Poultry. 13th ed. Wiley-Blackwell, Iowa, USA.
  33. Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS 2015 Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials. Int J Food Microbiol 207: 8-15. doi: 10.1016/j.ijfoodmicro.2015.04.025. https://doi.org/10.1016/j.ijfoodmicro.2015.04.025
  34. Sukumaran AT, Nannapaneni R, Kiess A, Sharma CS 2016 Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation Salmo Fresh$^{TM}$. Poult Sci 95(3):668-675. https://doi.org/10.3382/ps/pev332
  35. Wang C, Chen Q, Zhang C, Yang J, Lu Z, Lu F, Bie X 2017 Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res 236:14-23. doi: 10.1016/j.virusres.2017.05.001 https://doi.org/10.1016/j.virusres.2017.05.001
  36. Wigley P 2017 Salmonella enterica serovar Gallinarum: Addressing fundamental questions in bacteriology sixty years on from the 9R vaccine. Avian Pathol 46(2):119-124. https://doi.org/10.1080/03079457.2016.1240866
  37. Wittebole X, De Roock S, Opal SM 2014 A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226-235. https://doi.org/10.4161/viru.25991
  38. Yeha Y, Purushothaman P, Gupta N, Ragnone M, Verma SC, de Mello AS 2017 Bacteriophage application on red meats and poultry: Effects on Salmonella population in final ground products. Meat Science 127:30-34. doi: 10.1016/j.meatsci.2017.01.001 https://doi.org/10.1016/j.meatsci.2017.01.001