DOI QR코드

DOI QR Code

Sargassum yezoense Extract Inhibits Carbohydrate Digestive Enzymes In Vitro and Alleviates Postprandial Hyperglycemia in Diabetic Mice.

  • Park, Jae-Eun (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Ji-Hee (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2017.03.07
  • Accepted : 2017.04.21
  • Published : 2017.09.30

Abstract

In this study, we investigated whether Sargassum yezoense extract (SYE) could inhibit ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities, and alleviate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Freeze-dried S. yezoense was extracted with 80% ethanol and concentrated for use in this study. The hypoglycemic effect was determined by evaluating the inhibitory activities of SYE against ${\alpha}-glucosidase$ and ${\alpha}-amylase$ as well as its ability to decrease postprandial blood glucose levels. The half-maximal inhibitory concentrations of SYE against ${\alpha}-glucosidase$ and ${\alpha}-amylase$ were $0.078{\pm}0.004$ and $0.212{\pm}0.064mg/mL$, respectively. SYE was a more effective inhibitor of ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities than the positive control, acarbose. The increase in postprandial blood glucose levels was significantly alleviated in the SYE group compared with that in the control group of STZ-induced diabetic mice. Furthermore, the area under the curves significantly decreased with SYE administration in STZ-induced diabetic mice. These results suggest that SYE is a potent inhibitor of ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities and alleviates postprandial hyperglycemia caused by dietary carbohydrates.

Keywords

Sargassum yezoense;${\alpha}-glucosidase$;${\alpha}-amylase$;postprandial hyperglycemia;diabetic mice

Acknowledgement

Supported by : Pusan National University

References

  1. Zimmet P, Alberti KGMM, Shaw J. 2001. Global and societal implications of the diabetes epidemic. Nature 414: 782-787. https://doi.org/10.1038/414782a
  2. Muoio DM, Newgard CB. 2006. Obesity-related derangements in metabolic regulation. Annu Rev Biochem 75: 367-401. https://doi.org/10.1146/annurev.biochem.75.103004.142512
  3. Baron AD. 1998. Postprandial hyperglycaemia and ${\alpha}$-glucosidase inhibitors. Diabetes Res Clin Pract 40: S51-S55. https://doi.org/10.1016/S0168-8227(98)00043-6
  4. Ceriello A. 2005. Postprandial hyperglycemia and diabetes complications: is it time to treat?. Diabetes 54: 1-7. https://doi.org/10.2337/diabetes.54.1.1
  5. UK Prospective Diabetes Study (UKPDS) Group. 1998. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
  6. Saito N, Sakai H, Suzuki S, Sekihara H, Yajima Y. 1998. Effect of an ${\alpha}$-glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients. J Int Med Res 26: 219-232. https://doi.org/10.1177/030006059802600501
  7. Lebovitz HE. 2002. Treating hyperglycemia in type 2 diabetes: new goals and strategies. Cleve Clin J Med 69: 809-820. https://doi.org/10.3949/ccjm.69.10.809
  8. Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade DS. 2003. Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in type 2 diabetes. J Clin Endocrinol Metab 88: 5248-5254. https://doi.org/10.1210/jc.2003-030649
  9. Fonseca V. 2003. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr Med Res Opin 19: 635-641. https://doi.org/10.1185/030079903125002351
  10. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complications 12: 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  11. Yuan YV, Walsh NA. 2006. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44: 1144-1150. https://doi.org/10.1016/j.fct.2006.02.002
  12. Kang JY, Khan MN, Park NH, Cho JY, Lee MC, Fujii H, Hong YK. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J Ethnopharmacol 116: 187-190. https://doi.org/10.1016/j.jep.2007.10.032
  13. Pushpamali WA, Nikapitiya C, De Zoysa M, Whang I, Kim SJ, Lee J. 2008. Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata. Carbohydr Polym 73: 274-279. https://doi.org/10.1016/j.carbpol.2007.11.029
  14. Kwon MJ, Nam TJ. 2006. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79: 1956-1962. https://doi.org/10.1016/j.lfs.2006.06.031
  15. Hong IS, Kim GA, Park JK, Boo SM. 2008. Morphology and phenology of Sargassum yezoense (Sargassaceae, Phaeophyceae). Korean Journal of Nature Conservation 2: 132-139.
  16. Nakai M, Kageyama, N, Nakahara K, Miki W. 2006. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Mar Biotechnol 8: 409-414. https://doi.org/10.1007/s10126-005-6168-9
  17. Reddy P, Urban S. 2009. Meroditerpenoids from the southern Australian marine brown alga Sargassum fallax. Phytochemistry 70: 250-255. https://doi.org/10.1016/j.phytochem.2008.12.007
  18. Jung M, Jang KH, Kim B, Lee BH, Choi BW, Oh KB, Shin J. 2008. Meroditerpenoids from the brown alga Sargassum siliquastrum. J Nat Prod 71: 1714-1719. https://doi.org/10.1021/np800321y
  19. Seo Y, Park KE, Kim YA, Lee HJ, Yoo JS, Ahn JW, Lee BJ. 2006. Isolation of tetraprenyltoluquinols from the brown alga Sargassum thunbergii. Chem Pharm Bull 54: 1730-1733. https://doi.org/10.1248/cpb.54.1730
  20. Kim SN, Choi HY, Lee W, Park GM, Shin WS, Kim YK. 2008. Sargaquinoic acid and sargahydroquinoic acid from Sargassum yezoense stimulate adipocyte differentiation through $PPAR{\alpha}$/${\gamma}$ activation in 3T3-L1 cells. FEBS Lett 582: 3465-3472. https://doi.org/10.1016/j.febslet.2008.09.011
  21. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of ${\alpha}$-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci Biotechnol Biochem 61: 177-178. https://doi.org/10.1271/bbb.61.177
  22. Zheng J, He J, Ji B, Li Y, Zhang X. 2007. Antihyperglycemic activity of Prunella vulgaris L. in streptozotocin-induced diabetic mice. Asia Pac J Clin Nutr 16: 427-431.
  23. Kim JS. 2004. Effect of Rhemanniae Radix on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 33: 1133-1138. https://doi.org/10.3746/jkfn.2004.33.7.1133
  24. Prashanth D, Padmaja R, Samiulla DS. 2001. Effect of certain plant extracts on ${\alpha}$-amylase activity. Fitoterapia 72: 179-181. https://doi.org/10.1016/S0367-326X(00)00281-1
  25. Lee EH, Ham J, Ahn HR, Kim MC, Kim CY, Pan CH, Um BH, Jung SH. 2009. Inhibitory effects of the compounds isolated from Sargassum yezoense on ${\alpha}$-glucosidase and oxidative stress. Kor J Pharmacogn 40: 150-154.
  26. Lebovitz HE. 1992. Oral antidiabetic agents: the emergence of ${\alpha}$-glucosidase inhibitors. Drugs 3: 21-28.
  27. Tadera K, Minami Y, Takamatsu K, Matsuoka T. 2006. Inhibition of ${\alpha}$-glucosidase and ${\alpha}$-amylase by flavonoids. J Nutr Sci Vitaminol 52: 149-153. https://doi.org/10.3177/jnsv.52.149
  28. Koskinen P, Manttari M, Manninen V, Huttunen JK, Heinonen OP, Frick MH. 1992. Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diabetes Care 15: 820-825. https://doi.org/10.2337/diacare.15.7.820
  29. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J; International Prandial Glucose Regulation Study Group. 2006. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16: 453-456. https://doi.org/10.1016/j.numecd.2006.05.006
  30. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin dependent diabetes mellitus. Diabetes Res Clin Pract 36: 143-151. https://doi.org/10.1016/S0168-8227(97)00045-4
  31. Stern JL, Hagerman AE, Steinberg PD, Mason PK. 1996. Phlorotannin-protein interactions. J Chem Ecol 22: 1877-1899. https://doi.org/10.1007/BF02028510