DOI QR코드

DOI QR Code

Inhibitory Activity of Cordyceps bassiana Extract on LPS-induced Inflammation in RAW 264.7 Cells by Suppressing NF-κB Activation

  • Yoon, Deok Hyo (Department of Biochemistry, Kangwon National University) ;
  • Han, Changwoo (College of Pharmacy, Kangwon National University) ;
  • Fang, Yuanying (College of Pharmacy, Kangwon National University) ;
  • Gundeti, Shankariah (College of Pharmacy, Kangwon National University) ;
  • Han Lee, In-Sook (Department of Science Education, Kangwon National University) ;
  • Song, Won O (Department of Food Science and Human Nutrition, Michigan State University) ;
  • Hwang, Ki-Chul (Institute for Bio-Medical Convergence, Catholic Kwandong University) ;
  • Kim, Tae Woong (Department of Biochemistry, Kangwon National University) ;
  • Sung, Gi-Ho (Institute for Bio-Medical Convergence, Catholic Kwandong University) ;
  • Park, Haeil (College of Pharmacy, Kangwon National University)
  • Received : 2017.04.01
  • Accepted : 2017.05.05
  • Published : 2017.09.29

Abstract

Cordyceps bassiana has long been used as an oriental medicine and reported to possess diverse biological activities. The fruiting bodies of Cordyceps bassiana was extracted with ethanol and then further fractionated with n-hexane, ethyl acetate, n-butanol and water. The butanol fraction from Cordyceps bassiana (CBBF) exhibited the most effective in anti-inflammatory activity in RAW 264.7 macrophages and the roles of CBBF on the anti-inflammation cascade in LPS-stimulated RAW 264.7 cells were studied. To investigate the mechanism by which CBBF inhibits NO, iNOS and COX-2, the activation of $I{\kappa}B$ and MAPKs in LPS-activated macrophage were examined. Our present results demonstrated that CBBF inhibits NO production and iNOS expression in LPS-stimulated RAW 264.7 macrophage cells, and these effects were mediated through the inhibition of $I{\kappa}B-{\alpha}$, JNK and p38 phosphorylation. Also, CBBF suppressed activation of MAPKs including p38 and SAPK/JNK. Furthermore, CBBF significantly suppressed LPS-induced intracellular ROS generation. Its inhibition on iNOS expression, together with its antioxidant activity, may support its anti-inflammatory activity. Thus Cordyceps bassiana can be used as a useful medicinal food or drug for further studies.

Acknowledgement

Supported by : Rural Development Administration

References

  1. Zhou, X.; Gong, Z.; Su, Y.; Lin, J.; Tang, K. J. Pharm. Pharmacol. 2009, 61, 279-291. https://doi.org/10.1211/jpp.61.03.0002
  2. Sung, G. H.; Hywel-Jones, N. L. ; Sung, J. M.; Luangsa-Ard, J. J.; Shrestha, B.; Spatafora, J. W. Stud. Mycol. 2007, 57, 5-59. https://doi.org/10.3114/sim.2007.57.01
  3. Priest, F. G.; Goodfellow, M. Applied Microbial Systematics (9eds.); Kluwer Academic Publishers: Dordrecht. P, 2000, pp 203-230.
  4. Schaeffenberg, B. Z. Pflanzenkrankh. Pflanzensch. 1955, 62, 544-549.
  5. Li, Z.; Li, C.; Huang, B.; Fan, M. Chinese Science Bulletin 2001, 46, 751-753. https://doi.org/10.1007/BF03187215
  6. Kim, K. M.; Kwon, Y. G.; Chung, H. T.; Yun, Y. G.; Pae, H. O.; Han, J. A.; Ha, K. S.; Kim, T. W.; Kim, Y. M. Toxicol. Appl. Pharmacol. 2003, 190, 1-8. https://doi.org/10.1016/S0041-008X(03)00152-2
  7. Park, Y. M.; Won, J. H.; Kim, Y. H.; Choi, J. W.; Park, H. J.; Lee, K. T. J. Ethnopharmacol. 2005, 101, 120-128. https://doi.org/10.1016/j.jep.2005.04.003
  8. Kim, B. C.; Choi, J. W.; Hong, H. Y.; Lee, S. A.; Hong, S.; Park, E. H.; Kim, S. J.; Lim, C. J. J. Ethnopharmacol. 2006, 106, 364-371. https://doi.org/10.1016/j.jep.2006.01.009
  9. Paterson, R. R. Phytochemistry 2008, 69, 1469-1495. https://doi.org/10.1016/j.phytochem.2008.01.027
  10. Wadsworth, T. L.; Koop, D. R. Biochem. Pharmacol. 1999, 57, 941-949. https://doi.org/10.1016/S0006-2952(99)00002-7
  11. Makarov, S. S. Mol. Med. Today 2000, 6, 441-448. https://doi.org/10.1016/S1357-4310(00)01814-1
  12. D'Acquisto, F.; May, M. J.; Ghosh, S. Mol. Interv. 2002, 2, 22-35. https://doi.org/10.1124/mi.2.1.22
  13. Moynagh, P. N. J. Cell Sci. 2005, 118, 4589-4592. https://doi.org/10.1242/jcs.02579
  14. Giri, S.; Rattan, R.; Singh, A. K.; Singh, I. J. Immunol. 2004, 173, 5196-5208. https://doi.org/10.4049/jimmunol.173.8.5196
  15. Islam, S.; Hassan, F.; Mu, M. M.; Ito, H.; Koide, N.; Mori, I.; Yoshida, T.; Yokochi, T. Microbiol. Immunol. 2004, 48, 729-736. https://doi.org/10.1111/j.1348-0421.2004.tb03598.x
  16. Chan, E. D.; Riches, D. W. Am. J. Physiol. Cell Physiol. 2001, 280, C441-C450. https://doi.org/10.1152/ajpcell.2001.280.3.C441
  17. Hommes, D. W.; Peppelenbosch, M. P.; van Deventer, S. J. Gut 2003, 52, 144-151. https://doi.org/10.1136/gut.52.1.144
  18. Kim, S. H.; Johnson, V. J.; Shin, T. Y.; Sharma, R. P. Exp. Biol. Med(Maywood). 2004, 229, 203-213. https://doi.org/10.1177/153537020422900209
  19. Bai, S. K.; Lee, S. J.; Na, H. J.; Ha, K. S.; Han, J. A.; Lee, H.; Kwon, Y. G.; Chung, C. K.; Kim, Y. M. Exp. Mol. Med. 2005, 37, 323-334. https://doi.org/10.1038/emm.2005.42
  20. Kim, J. H.; Kim, D. H.; Baek, S. H.; Lee, H. J.; Kim, M. R.; Kwon, H. J.; Lee, C. H. Biochem. Pharmacol. 2006, 71, 1198-1205. https://doi.org/10.1016/j.bcp.2005.12.031
  21. Torres, M.; Forman, H. J. Biofactors 2003, 17, 287-296. https://doi.org/10.1002/biof.5520170128
  22. Suh, S. J.; Chung, T. W.; Son, M. J.; Kim, S. H.; Moon, T. C.; Son, K. H.; Kim, H. P.; Chang, H. W.; Kim, C. H. Arch. Biochem. Biophys. 2006, 447, 136-146. https://doi.org/10.1016/j.abb.2006.01.016
  23. Suh, W.; Nam, G.; Yang, W. S.; Sung, G. H.; Shim, S. H.; Cho, J. Y. Biomol. Ther. 2017, 25, 165-170. https://doi.org/10.4062/biomolther.2016.063