DOI QR코드

DOI QR Code

Immunomodulatory activities of crude polysaccharide fraction separated from Perilla frutescens Britton var. acuta Kudo

자소엽(Perilla frutescens Britton var. acuta Kudo) 조다당류 추출물의 면역활성 효과

  • Byun, Eui-Hong (Department of Food Science and Technology, Kongju National University)
  • 변의홍 (공주대학교 식품공학과)
  • Received : 2017.05.30
  • Accepted : 2017.07.21
  • Published : 2017.10.31

Abstract

This aim of this study was to examine the immunomodulatory activities of crude polysaccharides from Perilla frutescens Britton var. acuta Kudo (PCP) in mouse bone marrow-derived dendritic cells (BMDC) and splenocytes. The immunomodulatory activity was determined by cell viability, nitric oxide (NO) production, cell surface marker expression (CD 80/86 and MHC class I/II), and cytokine production in BMDC, and cell viability, and cytokine production in splenocytes. Cell proliferation and cytokine production (tumor necrosis factor; TNF-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and IL-12) tested in BMDC were significantly increased by PCP treatment. Additionally, the cell surface markers (CD 80/86, MHC class I/II) were highly increased by PCP treatment. For cytokine production in splenocytes, PCP treatment significantly increased the production of Th 1 cytokines [IL-2 and interferon (IFN)-${\gamma}$], but not Th 2 cytokines (IL-4). Therefore, PCP can induce immune cell activation and is a potential candidate for the development of nutraceuticals to boost the immune system.

Keywords

Perilla frutescens Britton var. acuta Kudo;crude polysaccharide;dendritic cells;splenocyte;immunomodulatory activity;cytokine production

References

  1. Hong HD, Cho CW, Rhee YK, Choi HD, Lee HS. Status of technology development using immune-modulating polysaccharide. Food Sci. Ind. 45: 1-11 (2012)
  2. Jiang MH, Zhu L, Jiang JG. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin. Ther. Tar. 14: 1367-1402 (2010) https://doi.org/10.1517/14728222.2010.531010
  3. Cha JH, Lim EM. Effects of Gardeniae fructus on cytokines in mouse macrophage. J. Korean Obstet. Gynecol. 27: 1-16 (2014)
  4. Erwig LP, Rees AJ. Macrophage activation and programing and its role for macrophage function in glomerular inflammation. Kidney Blood Press. R. 22: 21-25 (1999) https://doi.org/10.1159/000025905
  5. But PPH, Kimura T, Guo JX, Sung CK, Han BH. International Collation of Traditional and Folk Medicine. World Scientific, Singapore. pp. 202-203 (1997)
  6. Ueda H, Yamazaki C, Yamazaki M. Inhibitory effect of perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharm. Bull. 26: 560-563 (2003) https://doi.org/10.1248/bpb.26.560
  7. Oh HA, Park C, Ahn HJ, Park YS, Kim HM. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions. Exp. Biol. Med. 236: 99-106 (2011) https://doi.org/10.1258/ebm.2010.010252
  8. Makino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother. Res. 17: 240-243 (2003) https://doi.org/10.1002/ptr.1115
  9. Choi UK, Lee OH, Lim SI, Kim YC. Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Pseudomonas aeruginosa using the evolutionary operation factorial design technique. Int. J. Mol. Sci. 11: 3922-3932 (2010) https://doi.org/10.3390/ijms11103922
  10. Meng L, Lozano YF, Gaydou EM, Li B. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules 14: 133-140 (2008) https://doi.org/10.3390/molecules14010133
  11. Kim DH, Kim YC, Choi UK. Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Staphylococcus aureus using evolutionary operation factorial design technique. Int. J. Mol. Sci. 12: 2395-2407 (2011) https://doi.org/10.3390/ijms12042395
  12. Fujita T, Funayoshi A, Nakayama M. A phenylpropanoid glucoside from Perilla frutescens. Phytochemistry 37: 543-546 (1994) https://doi.org/10.1016/0031-9422(94)85096-8
  13. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukita M, Watanabe K, Kimura Y, Hasegawa J, Nishino H, Nishino H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 68: 85-90 (2004) https://doi.org/10.1271/bbb.68.85
  14. Zhao Q, Shepherd EG, Manson ME, Nelin LD, Sorokin A, Liu Y. The role of mitogen-activated protein kinase phosphatase-1 in the response of alveolar macrophages to lipopolysaccharide: Attenuation of proinflammatory cytokine biosynthesis via feedback control. J. Biol. Chem. 280: 8101-8108 (2005) https://doi.org/10.1074/jbc.M411760200
  15. Schepetkin IA, Quinn MT. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333 (2006) https://doi.org/10.1016/j.intimp.2005.10.005
  16. Sim SM, Im GH, Kim JW, Lee UY, Kim HW, Lee MU, Lee TS. The immuno-modulatory and antitumor effects of crude polysaccharides extracted from Daedaleopsis tricolor. Kor. J. Mycol. 31: 161-167 (2003) https://doi.org/10.4489/KJM.2003.31.3.161
  17. Lee HJ, Lee CW, Choi MS, Son DJ, Hong JT. Effects of esthetic essential oils on LPS-induced nitric oxide generation in murine macrophage RAW 264.7 cells. J. Soc. Cosmet. Sci. Korea 32: 111-116 (2006)
  18. Klimp AH, de Vries EG, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44: 143-161 (2002) https://doi.org/10.1016/S1040-8428(01)00203-7
  19. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664-666 (1988) https://doi.org/10.1038/333664a0
  20. Chiou WF, Chou CJ, Chen CF. Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 69: 625-625 (2001) https://doi.org/10.1016/S0024-3205(01)01154-7
  21. Seo WG, Pae HO, Oh GS, Kim NY, Kwon TO, Shin MK, Chia KY, Chung HT. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW 264.7 macrophages. J. Ethnopharmacol. 76: 119-123 (2001) https://doi.org/10.1016/S0378-8741(01)00220-3
  22. Hibbs JB, Taintor RR, Vavrin I, Rachlin EM. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157: 87-82 (1998)
  23. Lee K, Sohn Y, Lee MJ, Cho HS, Jang MH, Han NY, Shin KW, Kim SH, Cho IH, Bu Y, Jung HS. Effects of Angelica acutiloba on mast cell-mediated allergic reactions in vitro and in vivo. Immunopharm. Immunot. 34: 571-577 (2012) https://doi.org/10.3109/08923973.2011.636048
  24. Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin. Part II. modulation of proinflammatory cytokines, chemokines and adhesion molecules. Planta Med. 70: 93-103 (2004) https://doi.org/10.1055/s-2004-815483
  25. Lee JH, Kim YS, Lim EM. Effects of Angelicae Pubescentis Radix water extract on immune property in RAW 264.7 macrophages. J. Korean Oriental Med. 32: 175-184 (2011)
  26. Byun EH. Comparison study of immunomodulatory activity of polysaccharide and ethanol extracted from Sargassum fulvellum. J. Korean Soc. Food Sci. Nutr. 44: 1621-1628 (2015) https://doi.org/10.3746/jkfn.2015.44.11.1621
  27. Kim HS, Kang JS. Preparation and characteristics of bread by medicinal herb composites with immunostimulating activity. J Korean Soc. Food Sci. Nutr. 37: 109-116 (2008) https://doi.org/10.3746/jkfn.2008.37.1.109
  28. Lee TS, Shim SM, Im KH, Kim JW, Lee UY, Shim MJ, Lee MW. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Kor. J. Mycol. 31: 155-160 (2003) https://doi.org/10.4489/KJM.2003.31.3.155
  29. Lee JK, Lee MK, Yun YP, Kim Y, Kim JS, Kim YS, Kim K, Han SS, Lee CK. Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int. Immunopharmacol. 1: 1275-1284 (2001) https://doi.org/10.1016/S1567-5769(01)00052-2
  30. Kikuchi T, Ohno N, Ohno T. Maturation of dendritic cells induced by Candida beta-D-glucan. Int. Immunopharmacol. 2: 1503-1508 (2002) https://doi.org/10.1016/S1567-5769(02)00084-X
  31. Piani A, Hossle JP, Birchler T, Siegrist CA, Heumann D, Davies G, Loeliger S, Seger R, Lauener RP. Expression of MHC class II molecules contributes to lipopolysaccharide responsiveness. Eur. J. Immunol. 30: 3140-3146 (2000) https://doi.org/10.1002/1521-4141(200011)30:11<3140::AID-IMMU3140>3.0.CO;2-O
  32. Hegde NR, Chevalier MS, Johnson DC. Viral inhibition of MHC class II antigen presentation. Trends Immunol. 24: 278-285 (2003) https://doi.org/10.1016/S1471-4906(03)00099-1
  33. Mo ZQ, Wang JL, Yang M, Ni LY, Wang HQ, Lao GF, Li YW, Li AX, Luo XC, Dan XM. Characterization and expression analysis of grouper (Epinephelus coioides) co-stimulatory molecules CD83 and CD80/86 postCryptocaryon irritans infection. Fish Shellfish Immun. 67: 467-474 (2017) https://doi.org/10.1016/j.fsi.2017.05.064
  34. Ryu HS, Kim J, Kim HS. Enhancing effect of Sorghum bicolor L. Moench (Sorghum, su-su) extracts on mouse spleen and macrophage cell activation. Korean J. Food Nutr. 19: 176-182 (2006)
  35. Shan BE, Yoshida Y, Kuroda E, Yamashita U. Immunomodulating activity of seaweed extract on human lymphocytes in vitro. Int. J. Immunopharmacol. 21: 59-70 (1999) https://doi.org/10.1016/S0192-0561(98)00063-0
  36. Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145 (2001) https://doi.org/10.1038/35100529
  37. Chen FY, Ye YP, Sun HX, Li HX, Shi H. Stemucronatoside L, a pregnane glycoside from the roots of Stephanotis mucronata, inhibits Th1/Th2 immune responses in vitro. Chem. Biodivers. 6: 916-923b (2009) https://doi.org/10.1002/cbdv.200800159
  38. Lee SH, Ahn WY. Chemical constituents of saccharides and tritperpenoids in the the korean native mistletoes. J. Korean Wood Sci. Technol. 24: 28-36 (1996)