DOI QR코드

DOI QR Code

Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis - Black cumin and cancer -

  • Mollazadeh, Hamid (Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences) ;
  • Afshari, Amir R. (Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences) ;
  • Hosseinzadeh, Hossein (Pharmaceutical Research Center,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences)
  • Received : 2017.05.17
  • Accepted : 2017.09.07
  • Published : 2017.09.30

Abstract

Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and $PPAR-{\gamma}$, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.

References

  1. Grundy SM. Recent nutrition research: implications for foods of the future. Ann Med. 1991;23(2):187-93. https://doi.org/10.3109/07853899109148046
  2. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64(4):252-71. https://doi.org/10.3322/caac.21235
  3. Dirin MM, Mousavi S, Afshari AR, Tabrizian K, Ashrafi MH. Potential drug-drug interactions in prescriptions dispensed in community and hospital pharmacies in East of Iran. J Res Pharm Pract. 2014;3(3):104-7. https://doi.org/10.4103/2279-042X.141118
  4. Afshari AR, Sadeghnia HR, Mollazadeh H. A review on potential mechanisms of Terminalia chebula in Alzheimer's disease. Adv Pharmacol Sci. 2016;2016.DOI:8964849.
  5. Afshari AR, Boroushaki MT, Mollazadeh H. Pomegranate seed oil: a comprehensive review on its therapeutic effects. IJPSR. 2016;7(2):1000-13.
  6. Sadeghnia HR, Jamshidi R, Afshari AR, Mollazadeh H, Forouzanfar F, Rakhshandeh H. Terminalia chebula attenuates quinolinate-induced oxidative PC12 and OLN-93 cells death. Mult Scler Relat Disord. 2017;14:60-7. https://doi.org/10.1016/j.msard.2017.03.012
  7. Mollazadeh H, Boroushaki MT, Soukhtanloo M, Afshari AR, Vahedi MM. Effects of pomegranate seed oil on oxidant/antioxidant balance in heart and kidney homogenates and mitochondria of diabetic rats and high glucose- treated H9c2 cell line. Avicenna J Phytomed. 2017;7(4):317-33.
  8. Spencer DS, Puranik AS, Peppas NA. Intelligent nanoparticles for advanced drug delivery in cancer treatment. Curr Opin Chem Eng. 2015;7:84-92. https://doi.org/10.1016/j.coche.2014.12.003
  9. Lee YW, Chen TL, Shih YR, Tsai CL, Chang CC, Liang HH, et al. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: a population-based study. Cancer. 2014;120(9):1338-44. https://doi.org/10.1002/cncr.28579
  10. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis. 2000;21(3):485-95. https://doi.org/10.1093/carcin/21.3.485
  11. Khan MA, Chen HC, Tania M, Zhang DZ. Anticancer activities of Nigella sativa (black cumin). Afr J Tradit Complement Altern Med. 2011;8(S5):226-32.
  12. Lo AC, Woo TT, Wong RL, Wong D. Apoptosis and other cell death mechanisms after retinal detachment: implications for photoreceptor rescue. Ophthalmologica. 2011;226:10-7. https://doi.org/10.1159/000328206
  13. Carson DA, Ribeiro JM. Apoptosis and disease. The Lancet. 1993;341(8855):1251-4. https://doi.org/10.1016/0140-6736(93)91154-E
  14. Mousavi S H, Tayarani Najaran Z, Hersey P. Apoptosis: from signalling pathways to therapeutic tools. Iranian J Basic Med Sci. 2008;11(3):121-42.
  15. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. https://doi.org/10.1080/01926230701320337
  16. Steller H. Mechanisms and genes of cellular suicide. Science. 1995;267(5203):1445-9. https://doi.org/10.1126/science.7878463
  17. Mousavi SH, Hersey P. Role of caspases and reactive oxygen species in rose Bengal-induced toxicity in melanoma cells. Iranian J Basic Med Sci. 2007;10(2):118-23.
  18. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. https://doi.org/10.1038/bjc.1972.33
  19. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res. 2000;45(3):528-37. https://doi.org/10.1016/S0008-6363(99)00384-3
  20. Kurosaka K, Takahashi M, Watanabe N, Kobayashi Y. Silent cleanup of very early apoptotic cells by macrophages. J Immunol. 2003;171(9):4672-9. https://doi.org/10.4049/jimmunol.171.9.4672
  21. Gregory CD, Devitt A. The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically?. Immunology. 2004;113(1):1-14. https://doi.org/10.1111/j.1365-2567.2004.01959.x
  22. Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y. The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch. 1998;433(5):443-7. https://doi.org/10.1007/s004280050272
  23. Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407(6805):784-8. https://doi.org/10.1038/35037722
  24. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770-6. https://doi.org/10.1038/35037710
  25. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996;87(2):171. https://doi.org/10.1016/S0092-8674(00)81334-3
  26. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997;22(8):299-306. https://doi.org/10.1016/S0968-0004(97)01085-2
  27. Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 2006;6(11):813-22. https://doi.org/10.1038/nri1943
  28. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annual review of cell and developmental biology. 1999;15(1):269-90. https://doi.org/10.1146/annurev.cellbio.15.1.269
  29. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol. 2000;2(6):318-25. https://doi.org/10.1038/35014006
  30. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305-8. https://doi.org/10.1126/science.281.5381.1305
  31. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277-88. https://doi.org/10.1038/nrc776
  32. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635-6. https://doi.org/10.1126/science.1071553
  33. Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene. 2001;20(17):2122-33. https://doi.org/10.1038/sj.onc.1204282
  34. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem. 1999;274(3):1541-8. https://doi.org/10.1074/jbc.274.3.1541
  35. Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest. 2000;106(1):25-35. https://doi.org/10.1172/JCI9199
  36. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798-811. https://doi.org/10.1038/sj.onc.1209608
  37. Saelens X, Festjens N, Walle LV, Van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23(16):2861-74. https://doi.org/10.1038/sj.onc.1207523
  38. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423-33. https://doi.org/10.1038/sj.cdd.4401950
  39. Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621-32. https://doi.org/10.1038/nrm2952
  40. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192(4):571-80. https://doi.org/10.1084/jem.192.4.571
  41. Iglesias-Guimarais V, Gil-Guinon E, Sanchez-Osuna M, Casanelles E, García-Belinchón M, Comella JX, et al. Chromatin collapse during caspase-dependent apoptotic cell death requires DNA fragmentation factor, 40-kDa subunit-/caspase-activated deoxyribonuclease-mediated 3′-OH single-strand DNA breaks. J Biol Chem. 2013;288(13):9200-15. https://doi.org/10.1074/jbc.M112.411371
  42. Halawani E. Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. Adv Biol Res. 2009;3(5-6):148-52.
  43. Ahmad A, Husain A, Mujeeb M, Khan SA, Najmi AK, Siddique NA, et al. A review on therapeutic potential of Nigella sativa: a miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337-52. https://doi.org/10.1016/S2221-1691(13)60075-1
  44. Hosseinzadeh H, Parvardeh S, Asl MN, Sadeghnia HR, Ziaee T. Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. Phytomedicine. 2007;14(9):621-7. https://doi.org/10.1016/j.phymed.2006.12.005
  45. Mollazadeh H, Hosseinzadeh H. The protective effect of Nigella sativa against liver injury: a review. Iran J Basic Med Sci. 2014;17(12):958-66.
  46. Hosseinzadeh H, Parvardeh S. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine. 2004;11(1):56-64. https://doi.org/10.1078/0944-7113-00376
  47. El-Tahir KE-DH, Bakeet DM. The black seed Nigella sativa Linnaeus-a mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. J Taibah Univ Sci. 2006;1(1):1-19.
  48. Ramadan MF. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. Int J Food Sci Tech. 2007;42(10):1208-18. https://doi.org/10.1111/j.1365-2621.2006.01417.x
  49. Ziaee T, Moharreri N, Hosseinzadeh H. Review of pharmacological and toxicological effects of Nigella sativa and its active constituents. J Med Plants. 2012;2(42):16-42.
  50. Ramadan MF, Moersel JT. Analysis of glycolipids from black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) oilseeds. Food Chem. 2003;80(2):197-204. https://doi.org/10.1016/S0308-8146(02)00254-6
  51. Boskabady MH, Vahedi N, Amery S, Khakzad MR. The protective effect of Nigella Sativa alone and in combination with dexamethasone on tracheal responsiveness and lung inflammation of sulphur mustard exposed guinea pigs. J Ethnopharmacol. 2011;137(2):1028-34. https://doi.org/10.1016/j.jep.2011.07.030
  52. Ghosheh OA, Houdi AA, Crooks PA. High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). J Pharm Biomed Anal. 1999;19(5):757-62. https://doi.org/10.1016/S0731-7085(98)00300-8
  53. Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol. 2005;5(13-14):1749-70. https://doi.org/10.1016/j.intimp.2005.06.008
  54. Sahebkar A, Soranna D, Liu X, Thomopoulos C, Simental-Mendia LE, Derosa G, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure. J Hypertens. 2016;34(11):2127-35. https://doi.org/10.1097/HJH.0000000000001049
  55. Boskabadi MH. Physio-pathological characteristics of sulfur mustard exposed human and guinea pigs and the possible theraputic interventions. Iranian Congress Physiol Pharmacol. 2009;19.
  56. Yarnell E, Abascal K. Nigella sativa: holy herb of the middle East. Alternative and Complementary Therapies. 2011;17(2):99-105. https://doi.org/10.1089/act.2011.17203
  57. Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH. From here to eternity - the secret of Pharaohs: therapeutic potential of black cumin seeds and beyond. Cancer Ther. 2008;6(b):495-510.
  58. Abdel-Sater KA. Gastroprotective effects of Nigella Sativa oil on the formation of stress gastritis in hypothyroidal rats. Int J Physiol Pathophysiol Pharmacol. 2009;1(2):143-9.
  59. Amin B, Hosseinzadeh H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med. 2016;82(1-2):8-16. https://doi.org/10.1055/s-0035-1557838
  60. Vafaee F, Hosseini M, Hassanzadeh Z, Edalatmanesh MA, Sadeghnia HR, Seghatoleslam M, et al. The effects of Nigella sativa hydro-alcoholic extract on memory and brain tissues oxidative damage after repeated seizures in rats. Iran J Pharm Res. 2015;14(2):547-57.
  61. Forouzanfar F, Bazzaz BSF, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): A review on antimicrobial effects. Iran J Basic Med Sci. 2014;17(12):929-38.
  62. Hosseinzadeh H, Fazly Bazzaz BS, Haghi MM. Antibacterial activity of total extracts and essential oil of Nigella sativa L. seeds in mice. Pharmacologyonline. 2007;2:429-35.
  63. el-Dakhakhny M. Studies on the Egyptian Nigella sativa L. IV. some pharmacological properties of the seeds' active principle in comparison to its dihydro compound and its polymer. Arzneimittelforschung. 1965;15(10):1227-9.
  64. Amin B, Taheri MM, Hosseinzadeh H. Effects of intraperitoneal thymoquinone on chronic neuropathic pain in rats. Planta Med. 2014;80(15):1269-77. https://doi.org/10.1055/s-0034-1383062
  65. Hosseinzadeh H, Parvardeh S, Nassiri-Asl M, Mansouri MT. Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med Sci Monit. 2005;11(4):106-10.
  66. Havakhah S, Sadeghnia HR, Hajzadeh MA, Roshan NM, Shafiee S, Hosseinzadeh H, et al. Effect of Nigella sativa on ischemia-reperfusion induced rat kidney damage. Iran J Basic Med Sci. 2014;17(12):986-92.
  67. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17(4):299-305. https://doi.org/10.1002/ptr.1309
  68. Hosseinzadeh H, Moghim FF, Mansouri SMT. Effect of Nigella sativa seed extracts on ischemia-reperfusion in rat skeletal muscle. Pharmacologyonline. 2007;2:326-35.
  69. Hosseinzadeh H, Tafaghodi M, Mosavi MJ, Taghiabadi E. Effect of aqueous and ethanolic extracts of Nigella sativa seeds on milk production in rats. J Acupunct Meridian Stud. 2013;6(1):18-23. https://doi.org/10.1016/j.jams.2012.07.019
  70. Lei X, Liu M, Yang Z, Ji M, Guo X, Dong W. Thymoquinone prevents and ameliorates dextran sulfate sodiuminduced colitis in mice. Dig Dis Sci. 2012;57(9):2296-303. https://doi.org/10.1007/s10620-012-2156-x
  71. Pourbakhsh H, Taghiabadi E, Abnous K, Hariri AT, Hosseini SM, Hosseinzadeh H. Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iran J Basic Med Sci. 2014;17(12):1020-31.
  72. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci. 2014;17(12):1007-11.
  73. Javidi S, Razavi BM, Hosseinzadeh H. A review of neuropharmacology effects of Nigella sativa and its main component, thymoquinone. Phytother Res. 2016;30(8):1219-29. https://doi.org/10.1002/ptr.5634
  74. Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res. 2015;95-96:138-58. https://doi.org/10.1016/j.phrs.2015.03.011
  75. Hosseinzadeh H, Eskandari M, Ziaee T. Antitussive effect of thymoquinone, a constituent of Nigella sativa seeds, in guinea pigs. Pharmacologyonline. 2008;2:480-4.
  76. Hosseinzadeh H, Taiari S, Nassiri-Asl M. Effect of thymoquinone, a constituent of Nigella sativa L., on ischemia-reperfusion in rat skeletal muscle. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(5):503-8. https://doi.org/10.1007/s00210-012-0726-2
  77. Hosseinzadeh H, Montahaei R. Protective effect of Nigella sativa L. extracts and thymoquinone, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. Pharmacologyonline. 2007;1:176-89.
  78. Razavi BM, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest. 2014;37(11):1031-40. https://doi.org/10.1007/s40618-014-0150-1
  79. Tavakkoli A, Ahmadi A, Razavi BM, Hosseinzadeh H. Black seed (Nigella sativa) and its constituent thymoquinone as an antidote or a protective agent against natural or chemical toxicities. Iran J Pharm Res. 2017;16:2-23.
  80. El Mezayen R, El Gazzar M, Nicolls MR, Marecki JC, Dreskin SC, Nomiyama H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol Lett. 2006;106(1):72-81. https://doi.org/10.1016/j.imlet.2006.04.012
  81. Umar S, Zargan J, Umar K, Ahmad S, Katiyar CK, Khan HA. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact. 2012;197(1):40-6. https://doi.org/10.1016/j.cbi.2012.03.003
  82. Javidi S, Razavi BM, Hosseinzadeh H. A review of neuropharmacology effects of Nigella sativa and its main component, thymoquinone. Phytother Res. 2016;30(8):1219-29. https://doi.org/10.1002/ptr.5634
  83. Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol. 1999;187(1):127-37. https://doi.org/10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-T
  84. Ait Mbarek L, Ait Mouse H, Elabbadi N, Bensalah M, Gamouh A, Aboufatima R, et al. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Braz J Med Biol Res. 2007;40(6):839-47. https://doi.org/10.1590/S0100-879X2006005000108
  85. Asadi-Samani M, Kooti W, Aslani E, Shirzad H. A systematic review of Iran's medicinal plants with anticancer effects. J Evid Based Complementary Altern Med. 2015;21(2):143-53. https://doi.org/10.1177/2156587215600873
  86. Sharma NK, Ahirwar D, Jhade D, Gupta S. Medicinal and phamacological potential of Nigella sativa: a review. Ethnobotanical Leaflets. 2009;13:946-55.
  87. Samarakoon SR, Thabrew I, Galhena PB, De Silva D, Tennekoon KH. A comparison of the cytotoxic potential of standardized aqueous and ethanolic extracts of a polyherbal mixture comprised of Nigella sativa (seeds), Hemidesmus indicus (roots) and Smilax glabra (rhizome). Pharmacognosy Res. 2010;2(6):335-42. https://doi.org/10.4103/0974-8490.75451
  88. Thabrew MI, Mitry RR, Morsy MA, Hughes RD. Cytotoxic effects of a decoction of Nigella sativa, Hemidesmus indicus and Smilax glabra on human hepatoma HepG2 cells. Life Sci. 2005;77(12):1319-30. https://doi.org/10.1016/j.lfs.2005.01.022
  89. Shafi G, Munshi A, Hasan TN, Alshatwi AA, Jyothy A, Lei D. Induction of apoptosis in HeLa cells by chloroform fraction of seed extracts of Nigella sativa. Cancer Cell Int. 2009;9:29. https://doi.org/10.1186/1475-2867-9-29
  90. Hasan TN, Shafi G, Syed NA, Alfawaz MA, Alsaif MA, Munshi A, et al. Methanolic extract of Nigella sativa seed inhibits SiHa human cervical cancer cell proliferation through apoptosis. Nat Prod Commun. 2013;8(2):213-6.
  91. Samarakoon SR, Thabrew I, Galhena PB, Tennekoon KH. Modulation of apoptosis in human hepatocellular carcinoma (HepG2 cells) by a standardized herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizomes with anti-hepatocarcinogenic effects. BMC Complement Altern Med. 2012;12(1):25.
  92. Elkady AI. Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells. Afr J Biotechnol. 2012;11(64):12710-20.
  93. Shahraki S, Khajavirad A, Shafei MN, Mahmoudi M, Tabasi NS. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines. J Tradit Complement Med. 2015;6(1):89-96. https://doi.org/10.1016/j.jtcme.2014.11.018
  94. Shoieb AM, Elgayyar M, Dudrick PS, Bell JL, Tithof PK. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int J Oncol. 2003;22(1):107-13.
  95. Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, et al. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol. 2004;25(4):857-66.
  96. Arafa el-SA, Zhu Q, Shah ZI, Wani G, Barakat BM, Racoma I, et al. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat Res. 2011;706(1-2):28-35. https://doi.org/10.1016/j.mrfmmm.2010.10.007
  97. El-Mahdy MA, Zhu Q, Wang QE, Wani G, Wani AA. Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int J Cancer. 2005;117(3):409-17. https://doi.org/10.1002/ijc.21205
  98. Gali-Muhtasib HU, Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA. Molecular pathway for thymoquinoneinduced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs. 2004;15(4):389-99. https://doi.org/10.1097/00001813-200404000-00012
  99. Rooney S , Ryan MF. Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer Res. 2005;25:2199-204.
  100. Rooney S , Ryan MF. Modes of action of alpha-hederin and thymoquinone, active constituents of Nigella sativa, against HEp-2 cancer cells. Anticancer Res. 2005;25:4255-9.
  101. Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-${\kappa}B$ activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 2008;6(6):1059-70. https://doi.org/10.1158/1541-7786.MCR-07-2088
  102. Ng WK, Yazan LS, Ismail M. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein. Toxicol In Vitro. 2011;25(7):1392-8. https://doi.org/10.1016/j.tiv.2011.04.030
  103. Yazan LS, Ng W, Al-Naqeeb G, Ismail M. Cytotoxicity of thymoquinone (TQ) from Nigella sativa towards human cervical carcinoma cells (HeLa). J Pharm Res. 2009;2(4):585-9.
  104. Harzallah HJ, Kouidhi B, Flamini G, Bakhrouf A, Mahjoub T. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chem. 2011;129(4):1469-74. https://doi.org/10.1016/j.foodchem.2011.05.117
  105. Kundu J, Choi BY, Jeong CH, Kundu JK, Chun KS. Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2-and Src-mediated phosphorylation of EGF receptor tyrosine kinase. Oncol Rep. 2014;32(2):821-8. https://doi.org/10.3892/or.2014.3223
  106. Lang M, Borgmann M, Oberhuber G, Evstatiev R, Jimenez K, Dammann KW, et al. Thymoquinone attenuates tumor growth in ApcMin mice by interference with Wnt-signaling. Mol Cancer. 2013;12(1):41. https://doi.org/10.1186/1476-4598-12-41
  107. Raghunandhakumar S, Paramasivam A, Senthilraja S, Naveenkumar C, Asokkumar S, Binuclara J, et al. Thymoquinone inhibits cell proliferation through regulation of G1/S phase cell cycle transition in N- nitrosodiethylamine-induced experimental rat hepatocellular carcinoma. Toxicol Lett. 2013;223(1):60-72. https://doi.org/10.1016/j.toxlet.2013.08.018
  108. Woo CC, Hsu A, Kumar AP, Sethi G, Tan KH. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: the role of p38 MAPK and ROS. PLoS One. 2013;8(10):e75356. https://doi.org/10.1371/journal.pone.0075356
  109. Kaseb AO, Chinnakannu K, Chen D, Sivanandam A, Tejwani S, Menon M, et al. Androgen receptor–and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res. 2007;67(16):7782-8. https://doi.org/10.1158/0008-5472.CAN-07-1483
  110. El-Baba C, Mahadevan V, Fahlbusch FB, Mohan S S, Rau TT, Gali-Muhtasib H, et al. Thymoquinone-induced conformational changes of PAK1 interrupt prosurvival MEK-ERK signaling in colorectal cancer. Mol Cancer. 2014;13:201. https://doi.org/10.1186/1476-4598-13-201
  111. Dirican A, Atmaca H, Bozkurt E, Erten C, Karaca B, Uslu R. Novel combination of docetaxel and thymoquinone induces synergistic cytotoxicity and apoptosis in DU-145 human prostate cancer cells by modulating PI3KAKT pathway. Clin Transl Oncol. 2015;17(2):145-51. https://doi.org/10.1007/s12094-014-1206-6
  112. Majdalawieh AF, Hmaidan R, Carr RI. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J Ethnopharmacol. 2010;131(2):268-75. https://doi.org/10.1016/j.jep.2010.06.030
  113. Norsharina I, Maznah I, Aied A, Ghanya A. Thymoquinone rich fraction from Nigella sativa and thymoquinone are cytotoxic towards colon and leukemic carcinoma cell lines. J Med Plants Res. 2011;5(15):3359-66.
  114. Swamy SM, Huat BT. Intracellular glutathione depletion and reactive oxygen species generation are important in ${\alpha}$-hederin-induced apoptosis of P388 cells. Mol Cell Biochem. 2003;245(1-2):127-39. https://doi.org/10.1023/A:1022807207948
  115. Chehl N, Chipitsyna G, Gong Q, Yeo C J, Arafat HA. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB. 2009;11(5):373-81. https://doi.org/10.1111/j.1477-2574.2009.00059.x
  116. El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, et al. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010;15(2):183-95. https://doi.org/10.1007/s10495-009-0421-z
  117. Awad EM. In vitro decreases of the fibrinolytic potential of cultured human fibrosarcoma cell line, HT1080, by Nigella sativa oil. Phytomedicine. 2005;12(1-2):100-7. https://doi.org/10.1016/j.phymed.2003.09.003
  118. Ivankovic S, Stojkovic R, Jukic M, Milos M, Milos M, Jurin M. The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp Oncol. 2006;28(3):220-4.
  119. Effenberger-Neidnicht K, Schobert R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother Pharmacol. 2011;67(4):867-74. https://doi.org/10.1007/s00280-010-1386-x
  120. Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, et al. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther. 2008;7(7):1789-96. https://doi.org/10.1158/1535-7163.MCT-08-0124
  121. Li F, Rajendran P, Sethi G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol. 2010;161(3):541-54. https://doi.org/10.1111/j.1476-5381.2010.00874.x
  122. Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line. Asian Pac J Cancer Prev. 2014;15(2):983-7. https://doi.org/10.7314/APJCP.2014.15.2.983
  123. Peng L, Liu A, Shen Y, Xu HZ, Yang SZ, Ying XZ, et al. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-${\kappa}B$ pathway. Oncol Rep. 2013;29(2):571-8. https://doi.org/10.3892/or.2012.2165
  124. Hussain AR, Ahmed M, Ahmed S, Manogaran P, Platanias LC, Alvi SN, et al. Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med. 2011;50(8):978-87. https://doi.org/10.1016/j.freeradbiomed.2010.12.034
  125. Bai T, Lian LH, Wu YL, Wan Y, Nan JX. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int Immunopharmacol. 2013;15(2):275-81. https://doi.org/10.1016/j.intimp.2012.12.020
  126. Paramasivam A, Sambantham S, Shabnam J, Raghunandhakumar S, Anandan B, Rajiv R, et al. Anti-cancer effects of thymoquinone in mouse neuroblastoma (Neuro-2a) cells through caspase-3 activation with down-regulation of XIAP. Toxicol Lett. 2012;213(2):151-9. https://doi.org/10.1016/j.toxlet.2012.06.011
  127. el-Aziz MA, Hassan HA, Mohamed MH, Meki AR, Abdel-Ghaffar SK, Hussein MR. The biochemical and morphological alterations following administration of melatonin, retinoic acid and Nigella sativa in mammary carcinoma: an animal model. Int J Exp Pathol. 2005;86(6):383-96. https://doi.org/10.1111/j.0959-9673.2005.00448.x
  128. Salim EI, Fukushima S. Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutr Cancer. 2003;45(2):195-202. https://doi.org/10.1207/S15327914NC4502_09
  129. Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X, et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophy Res Commun. 2012;417(2):864-8. https://doi.org/10.1016/j.bbrc.2011.12.063
  130. Fathy M, Nikaido T. In vivo modulation of iNOS pathway in hepatocellular carcinoma by Nigella sativa. Environ Health Prev Med. 2013;18(5):377-85. https://doi.org/10.1007/s12199-013-0336-8
  131. Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J Exp Clin Cancer Res. 2010;29(1):87. https://doi.org/10.1186/1756-9966-29-87
  132. Attoub S, Sperandio O, Raza H, Arafat K, Al-Salam S, Al Sultan M A, et al. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol. 2013;27(5):557-69. https://doi.org/10.1111/j.1472-8206.2012.01056.x
  133. Salim EI. Cancer chemopreventive potential of volatile oil from black cumin seeds, Nigella sativa L., in a rat multi-organ carcinogenesis bioassay. Oncol Lett. 2010;1(5):913-24. https://doi.org/10.3892/ol_00000162
  134. Kundu JK, Liu L, Shin JW, Surh YJ. Thymoquinone inhibits phorbol ester-induced activation of NF-${\kappa}B$ and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo. Biochem Biophys Res Commun. 2013;438(4):721-7. https://doi.org/10.1016/j.bbrc.2013.07.110

Cited by

  1. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. pp.2211-1069, 2019, https://doi.org/10.1007/s13596-019-00363-3