DOI QR코드

DOI QR Code

Preparation of photoresist-derived carbon micropatterns by proton ion beam lithography and pyrolysis

  • Nam, Hui-Gyun (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Jung, Jin-Mook (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Hwang, In-Tae (Research Division for Industry and Environment, Korea Atomic Energy Research Institute) ;
  • Shin, Junhwa (Research Division for Industry and Environment, Korea Atomic Energy Research Institute) ;
  • Jung, Chang-Hee (Research Division for Industry and Environment, Korea Atomic Energy Research Institute) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
  • Received : 2017.04.18
  • Accepted : 2017.06.07
  • Published : 2017.10.31

Abstract

Carbon micropatterns (CMs) were fabricated from a negative-type SU-8 photoresist by proton ion beam lithography and pyrolysis. Well-defined negative-type SU-8 micropatterns were formed by proton ion beam lithography at the optimized fluence of $1{\times}10^{15}ions\;cm^{-2}$ and then pyrolyzed to form CMs. The crosslinked network structures formed by proton irradiation were converted to pseudo-graphitic structures by pyrolysis. The fabricated CMs showed a good electrical conductivity of $1.58{\times}10^2S\;cm^{-1}$ and a very low surface roughness.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Trade, Industry & Energy (MOTIE), National Research Foundation of Korea (NRF)

References

  1. Rammohan A, Sharma A. Carbon as a MEMS Material. In: Tiwari A, Raj B, eds. Materials and Failures in MEMS and NEMS, Wiley, New York, 1 (2015).
  2. Jiang S, Shi T, Zhan X, Xi S, Long H, Gong B, Li J, Cheng S, Huang Y, Tang Z. Scalable fabrication of carbon-based MEMS/ NEMS and their applications: a review. J Micromech Microeng, 25, 113001 (2015). https://doi.org/10.1088/0960-1317/25/11/113001. https://doi.org/10.1088/0960-1317/25/11/113001
  3. Sharma S, Madou M. Micro and nano patterning of carbon electrodes for bioMEMS. Bioinspired Biomimetic Nanobiomater, 1, 252 (2012). https://doi.org/10.1680/bbn.12.00010. https://doi.org/10.1680/bbn.12.00010
  4. Lee JA, Lee SW, Lee KC, Park SI, Lee SS. Fabrication and characterization of freestanding 3D carbon microstructures using multiexposures and resist pyrolysis. J Micromech Microeng, 18, 035012 (2008). https://doi.org/10.1088/0960-1317/18/3/035012. https://doi.org/10.1088/0960-1317/18/3/035012
  5. Duan H, Zhao J, Zhang Y, Xie E, Han L. Preparing patterned carbonaceous nanostructures directly by overexposure of PMMA using electron-beam lithography. Nanotechnology, 20, 135306 (2009). https://doi.org/10.1088/0957-4484/20/13/135306. https://doi.org/10.1088/0957-4484/20/13/135306
  6. Kimura T, Kinoshita H, Koizumi H, Ichikawa T. Construction of carbon micropattern and nanostructure by ion beam-irradiation of vapor-deposited polycyclic aromatic compounds. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At, 255, 321 (2007). https://org/10.1016/j.nimb.2006.11.119. https://doi.org/10.1016/j.nimb.2006.11.119
  7. Penmatsa V, Kawarada H, Wang C. Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis. J Micromech Microeng, 22, 045024 (2012). https://doi.org/10.1088/0960-1317/22/4/045024. https://doi.org/10.1088/0960-1317/22/4/045024
  8. Schueller OJA, Brittain ST, Whitesides GM. Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv Mater, 9, 477 (1997). https://doi.org/10.1002/adma.19970090604. https://doi.org/10.1002/adma.19970090604
  9. Jung CH, Kim WJ, Jung CH, Hwang IT, Khim DY, Kim DY, Lee JS, Ku BC, Choi JH. A simple PAN-based fabrication method for microstructured carbon electrodes for organic field-effect transistors. Carbon, 87, 257 (2015). https://doi.org/10.1016/j.carbon.2015.02.040. https://doi.org/10.1016/j.carbon.2015.02.040
  10. Jung JM, Hong JH, Hwang IT, Shin J, Kim YJ, Jeong YG, Jung CH, Choi JH. Facile construction of electrically-conductive carbon patterns from a cheap coal-type pitch and their application to electric heating devices. J Ind Eng Chem, 39, 188 (2016). https://doi.org/10.1016/j.jiec.2016.05.023. https://doi.org/10.1016/j.jiec.2016.05.023
  11. Singh A, Jayaram J, Madou M, Akbar S. Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J Electrochem Soc, 149, E78 (2002). https://doi.org/10.1149/1.1436085. https://doi.org/10.1149/1.1436085
  12. Wang C, Madou M. From MEMS to NEMS with carbon. Biosens Bioelectron, 20, 2181 (2005). https://doi.org/10.1016/j.bios.2004.09.034. https://doi.org/10.1016/j.bios.2004.09.034
  13. Du R, Ssenyange S, Aktary M, McDermott MT. Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position. Small, 5, 1162 (2009). https://doi.org/10.1002/smll.200801357.
  14. Mardegan A, Kamath R, Sharma S, Scopece P, Ugo P, Madou M. Optimization of carbon electrodes derived from epoxy-based photoresist. J Electrochem Soc, 160, B132 (2013). https://doi.org/10.1149/2.107308jes. https://doi.org/10.1149/2.107308jes
  15. Martinez-Duarte R. SU-8 photolithography as a toolbox for carbon MEMS. Micromachines, 5, 766 (2014). https://doi.org/10.3390/mi5030766. https://doi.org/10.3390/mi5030766
  16. Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, Dunn B. C-MEMS for the manufacture of 3D microbatteries. Electrochem Solid State Lett, 7, A435 (2004). https://doi.org/10.1149/1.1798151. https://doi.org/10.1149/1.1798151
  17. Teixidor GT, Zaouk RB, Park BY, Madou MJ. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J Power Suources, 183, 730 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.065. https://doi.org/10.1016/j.jpowsour.2008.05.065
  18. Lim Y, Woo J, Joo SH, Shin H. Patternable nanoporous carbon electrodes for use as supercapacitors. J Electrochem Soc, 163, A1886 (2016). https://doi.org/10.1149/2.0561609jes. https://doi.org/10.1149/2.0561609jes
  19. Hai B, Zou YQ, Guo GB, Wang ZD, Liu YY, Wang XX, Yan H, Ma LT, Bai YC. A novel strategy to prepare LDH networks loaded carbon structure by C-MEMS techniques for glucose detection. Chin Chem Lett, 28, 149 (2017). https://doi.org/10.1016/j.cclet.2016.07.023. https://doi.org/10.1016/j.cclet.2016.07.023
  20. Mitra J, Jain S, Sharma A, Basu B. Patterned growth and differentiation of neural cells on polymer derived carbon substrates with micro/nano structures in vitro. Carbon, 65, 140 (2013). https://doi.org/10.1016/j.carbon.2013.08.008. https://doi.org/10.1016/j.carbon.2013.08.008
  21. Hwang IT, Jung CH, Choi JH, Nho YC. Simple and biocompatible micropatterning of multiple cell types on a polymer substrate by using ion implantation. Langmuir, 26, 18437 (2010). https://doi.org/10.1021/la103474s. https://doi.org/10.1021/la103474s
  22. Kondyurin A, Bilek M. Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, Elsevier, Netherlands, 11 (2008).
  23. Watt F, Bettiol AA, Van Kan JA, Teo EJ, Breese MBH. Ion beam lithography and nanofabrication: a review. Int J Nanosci, 4, 269 (2005). https://doi.org/10.1142/S0219581X05003139. https://doi.org/10.1142/S0219581X05003139
  24. Lee H, Rajagopalan R, Robinson J, Pantano CG. Processing and characterization of ultrathin carbon coatings on glass. ACS Appl Mater Interfaces, 1, 927 (2009). https://doi.org/10.1021/am900032p. https://doi.org/10.1021/am900032p
  25. Wang SJ, Geng Y, Zheng Q, Kim JK. Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815 (2010). https://doi.org/10.1016/j.carbon.2010.01.027. https://doi.org/10.1016/j.carbon.2010.01.027
  26. Tan TL, Wong D, Lee P, Rawat RS, Patran A. Study of a chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy. Appl Spectrosc, 58, 1288 (2004). https://doi.org/10.1366/0003702042475402. https://doi.org/10.1366/0003702042475402
  27. Keller S, Blagoi G, Lillemose M, Haefliger D, Boisen A. Processing of thin SU-8 films. J Micromech Microeng, 18, 125020 (2008). https://doi.org/10.1088/0960-1317/18/12/125020. https://doi.org/10.1088/0960-1317/18/12/125020
  28. Bandi T, Polido-Gomes J, Neels A, Dommann A, Shea HR. Making MEMS more suited for space: assessing the proton-radiation tolerance of structural materials for microsystems in orbit. Proceedings of the SPIE MOEMS-MEMS, San Francisco, CA, 86140M-1 (2013). https://doi.org/10.1117/12.2004705.
  29. Jin WM, Moon JH. Supported pyrolysis for lithographically defined 3D carbon microstructures. J Mater Chem, 21, 14456 (2011). https://doi.org/10.1039/C1JM10599J. https://doi.org/10.1039/c1jm10599j
  30. Walther F, Davydovskaya P, Zurcher S, Kaiser M, Herberg H, Gigler AM, Stark RW. Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J Micromech Microeng, 17, 524 (2007). https://doi.org/10.1088/0960-1317/17/3/015. https://doi.org/10.1088/0960-1317/17/3/015
  31. Ingrosso C, Sardella E, Keller S, Dohn S, Striccoli M, Agostiano A, Boisen A, Curri ML. Surface functionalization of epoxy-resistbased microcantilevers with iron oxide nanocrystals. Adv Mater, 22, 3288 (2010). https://doi.org/10.1002/adma.200904013. https://doi.org/10.1002/adma.200904013
  32. De Volder MFL, Vansweevelt R, Wagner P, Reynaerts D, Hoof CV, Hart AJ. Hierarchical carbon nanowire microarchitectures made by plasma-assisted pyrolysis of photoresist. ACS Nano, 5, 6593 (2011). https://doi.org/10.1021/nn201976d. https://doi.org/10.1021/nn201976d
  33. Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052. https://doi.org/10.1016/j.ssc.2007.03.052
  34. Larouche N, Stansfield BL. Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon, 48, 620 (2010). https://doi.org/10.1016/j.carbon.2009.10.002. https://doi.org/10.1016/j.carbon.2009.10.002
  35. Kakunuri M, Sharma CS. Effect of pyrolysis temperature on electrochemical performance of SU-8 photoresist derived carbon films. ECS Trans, 66, 57 (2015). https://doi.org/10.1149/06609.0057ecst