DOI QR코드

DOI QR Code

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers

더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터

  • Kim, Yonghun (Department of Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS)) ;
  • Cho, Byungjin (Department of Advanced Material Engineering, Chungbuk National University)
  • 김용훈 (재료연구소 소자기능박막연구실) ;
  • 조병진 (충북대학교 신소재공학과)
  • Received : 2017.08.23
  • Accepted : 2017.10.12
  • Published : 2017.11.27

Abstract

We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

Acknowledgement

Supported by : Chungbuk National University, National Research Foundation of Korea(NRF)

References

  1. K. Boahen, Sci. Am., 292, 56 (2005).
  2. B. Gao, Y. Bi, H. Chen, R. Liu, P. Huang, B. Chen, L. Liu, X. Liu, S. Yu, P. Wong and J. Kang, ACS Nano, 8, 6998 (2014). https://doi.org/10.1021/nn501824r
  3. K. Kim, C.-L. Chen, Q. Truong, A. M. Shen and Y. Chen, Adv. Mater., 1693 (2012).
  4. A. M. Shen, C.-L. Chen, K. Kim, B. Cho, A. Tudor and Y. Chen, ACS Nano, 7, 6117 (2013). https://doi.org/10.1021/nn401946s
  5. B. Cho, K. Kim, C.-L. Chen, A. M. Shen, Q. Truong and Y. Chen, Small, 9, 2283 (2013). https://doi.org/10.1002/smll.201202593
  6. W. Xu, H. Cho, Y.-H. Kim, Y.-T. Kim, C. Wolf, C.-G. Park and T.-W. Lee, Adv. Mater., 28, 5916 (2016). https://doi.org/10.1002/adma.201506363
  7. T. Prodromakis, C. Toumazou and L. Chua, Nat. Mater., 11, 478 (2012). https://doi.org/10.1038/nmat3338
  8. D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, Nature, 453, 80 (2008). https://doi.org/10.1038/nature06932
  9. P. Cheng, K. Sun and Y. H. Hu, Nano Lett., 16, 572 (2016). https://doi.org/10.1021/acs.nanolett.5b04260
  10. F. Shao, Y. Yang, L. Q. Zhu, P. Feng and Q. Wan, ACS Appl. Mater. Interfaces acsami.5b10195 (2016).
  11. C.-L. Chen, K. Kim, Q. Truong, A. Shen, Z. Li and Y. Chen, Nanotechnology, 23, 275202 (2012). https://doi.org/10.1088/0957-4484/23/27/275202
  12. P. Gkoupidenis, N. Schaefer, B. Garlan and G. G. Malliaras, Adv. Mater., 27, 7176 (2015). https://doi.org/10.1002/adma.201503674
  13. C. Kim, S. Sung and M. Yoon, Sci. Rep., 6, 33355 (2016). https://doi.org/10.1038/srep33355
  14. M. S. Arnold, A. a Green, J. F. Hulvat, S. I. Stupp and M. C. Hersam, Nat. Nanotechnol., 1, 60 (2006). https://doi.org/10.1038/nnano.2006.52
  15. C. Wang, J. Zhang and C. Zhou, ACS Nano, 4, 7123 (2010). https://doi.org/10.1021/nn1021378
  16. C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. De Arco and C. Zhou, Nano Lett., 9, 4285 (2009). https://doi.org/10.1021/nl902522f
  17. R. M. S. Gaur and R. K. Tiwari, J. Plast. Film Sheeting, 25, 271 (2009). https://doi.org/10.1177/8756087910367572
  18. W. J. Yu, S. H. Chae, S. Y. Lee, D. L. Duong and Y. H. Lee, Adv. Mater., 23, 1889 (2011). https://doi.org/10.1002/adma.201004444
  19. W. J. Yu, B. R. Kang, I. H. Lee, Y.-S. Min and Y. H. Lee, Adv. Mater., 21, 4821 (2009). https://doi.org/10.1002/adma.200900911
  20. M. Rinkio, A. Johansson, G. S. Paraoanu and P. Torma, Nano Lett., 9, 643 (2009). https://doi.org/10.1021/nl8029916
  21. M. Olmedo, C. Wang, K. Ryu, H. Zhou, J. Ren, N. Zhan, C. Zhou and J. Liu, ACS Nano, 5, 7972 (2011). https://doi.org/10.1021/nn202377f
  22. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos and P. L. McEuen, Nature, 407, 57 (2000). https://doi.org/10.1038/35024031
  23. E. D. Mentovich, B. Belgorodsky, I. Kalifa and S. Richter, Adv. Mater., 22, 2182 (2010). https://doi.org/10.1002/adma.200902431
  24. B. Park, S. Choi, S. Graham and E. Reichmanis, J. Phys. Chem. C, 116, 9390 (2012). https://doi.org/10.1021/jp300708z
  25. T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski and M. Aono, Nat. Mater., 10, 591 (2011). https://doi.org/10.1038/nmat3054