DOI QR코드

DOI QR Code

Interface Reactions and Diffusion of Si3N4/Ti and Si3N4/TiAl Alloys

Si3N4/Ti와 Si3N4/TiAl합금의 계면반응 및 확산 거동

  • Choi, Kwang Su (Department of Materials Science and Engineering, Hanbat National University) ;
  • Kim, Sun Jin (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Ji Eun (Department of Materials Science and Engineering, Hanbat National University) ;
  • Park, Joon Sik (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Jong Won (Department of Materials Science and Engineering, Hanbat National University)
  • 최광수 (한밭대학교 신소재공학과) ;
  • 김선진 (한밭대학교 신소재공학과) ;
  • 이지은 (한밭대학교 신소재공학과) ;
  • 박준식 (한밭대학교 신소재공학과) ;
  • 이종원 (한밭대학교 신소재공학과)
  • Received : 2017.09.26
  • Accepted : 2017.10.16
  • Published : 2017.11.27

Abstract

$Si_3N_4$ is a ceramic material attracting attention in many fields because of its excellent abrasion resistance. In addition, Ti and TiAl alloys are metals used in a variety of high temperature environments, and have attracted much attention because of their high strength and high melting points. Therefore, study of the interface reaction between $Si_3N_4/Ti$ and $Si_3N_4/TiAl$ can be a useful practice to identify phase selection and diffusion control. In this study, $Si_3N_4/Ti_5Si_3+TiN/TiN/Ti$ diffusing pairs were formed in the $Si_3N_4/Ti$ interfacial reaction and $Si_3N_4/TiN(Al)/Ti_3Al/TiAl$ diffusion pathway was identified in the $Si_3N_4/TiAl$ interfacial reaction. The diffusion layers of the interface reactions were identified and, to investigate the kinetics of the diffusion layer, the integrated diffusion coefficients were estimated.

Acknowledgement

Supported by : Hanbat National University

References

  1. W. S. Kim, W. S. Hong, S. H. Park and K. B. Kim, Korean J. Mater. Res., 17, 402 (2007). https://doi.org/10.3740/MRSK.2007.17.8.402
  2. W-J. Kim, S. M. Kang and J. Y. Park, Korean J. Mater. Res., 17, 366 (2007). https://doi.org/10.3740/MRSK.2007.17.7.366
  3. O. Song, K. Ando, K. Takahashi, W. Nakao and J. Ryu, Korean J. Mater. Res., 12, 780 (2005).
  4. Y. M. Lee, O. Song and S. H. Lee, Korean J. Mater. Res., 11, 427 (2001).
  5. I. Tomaszkiewicz and J. Therm. Anal. Calorim. 65, 425 (2001). https://doi.org/10.1023/A:1012472801483
  6. Y-W. Kim, Acta Metall. Mater., 40, 1121 (1992). https://doi.org/10.1016/0956-7151(92)90411-7
  7. M. S. Kim, K. S. Choi, J. Zhu, F. Zhang, Y. Song, YW. Kim, S. H. Yi and J. S. Park, Met. Mater. Int., 23, 625 (2017). https://doi.org/10.1007/s12540-017-6667-z
  8. K. Suganuma, T. Okamoto, Y. Miyamoto, M. Shimada and M. Koizumi, Mater. Sci. Tech., 2, 1156 (1986). https://doi.org/10.1179/026708386790328542
  9. I. Gotman and E. Y. Gutmanas, J. Mater Sci. Lett., 9, 813 (1990). https://doi.org/10.1007/BF00720167
  10. S. Morozumi, K. Hamaguchi, M. Iwasaki, M. Kikuchi and Y. Minonishi, J. Japan Inst. Metals, 54, 1392 (1990). https://doi.org/10.2320/jinstmet1952.54.12_1392
  11. M. Paulasto, J. K. Kivilahti and F. J. J. van Loo, J. Appl. Phys., 77, 4412 (1995). https://doi.org/10.1063/1.359468
  12. M. Maeda, R. Oomoto, M. Naka and T. Shibayanagi, Trans. JWRI, 30, 59 (2001).
  13. A. Flink, Linkoping Studies in Science and Technology Licentiate Thesis No. 1270, Linkoping University, Sweden, (2006).
  14. C. Wagner, Acta Metall., 17, 99 (1969). https://doi.org/10.1016/0001-6160(69)90131-X