Growth Mechanism Evolution of ZnO Nanostructures by Leidenfrost Effect in Ultrasonic Spray Pyrolysis Deposition

초음파 분무 열분해법에 의한 ZnO 나노구조 성장시 Leidenfrost 효과에 의한 성장 거동 변화

  • Han, In Sub (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 한인섭 (서울과학기술대학교 신소재공학과) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2017.09.25
  • Accepted : 2017.10.17
  • Published : 2017.11.27


We investigated a Leidenfrost effect in the growth of ZnO nanostructures on silicon substrates by ultrasonic-assisted spray pyrolysis deposition(SPD). Structural and optical properties of the ZnO nanostructures grown by varying the growth parameters, such as substrate temperature, source concentration, and suction rate of the mist in the chambers, were investigated using field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. Structural investigations of the ZnO nanostructures showed abnormal evolution of the morphologies with variation of the substrate temperatures. The shape of the ZnO nanostructures transformed from nanoplate, nanorod, nanopencil, and nanoprism shapes with increasing of the substrate temperature from 250 to $450^{\circ}C$; these shapes were significantly different from those seen for the conventional growth mechanisms in SPD. The observed growth behavior showed that a Leidenfrost effect dominantly affected the growth mechanism of the ZnO nanostructures.


Supported by : SeoulTech(Seoul National University of Science and Technology)


  1. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Cho, J. Appl. Phys., 105, 013502 (2012).
  2. M. Ardyanian and N. Sedigh, Bull. Mater. Sci., 37, 1309 (2014).
  3. M. B. Rahman, S. H. Keshmirl, Sens. Lett., 7, 1 (2009).
  4. S. Yun, J. Lee, J. Yang and S. Lim., Physica B, 405, 413 (2010).
  5. R. Jaramillo and S. Ramanathan, Sol. Energy Mater. Sol. Cells, 95, 602 (2011).
  6. H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 445, 263 (2003).
  7. S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang and W. F. Hsieh, J. Cryst. Growth, 287, 78 (2006).
  8. D. Y. Lee, J. W. Lee, G. H. An, D. H. Riu and H. J. Ahn, Korean J. Mater. Res., 26, 258 (2016).
  9. D. Y. Shin, J. W. Beav, B. R. Koo and H. J. Ahn, Korean J. Mater. Res., 27, 390 (2017).
  10. I. S. Han and I. K. Park, Korean J. Mater. Res., 27, 403 (2017).
  11. I. Isakov, H. Faber, M. Grell, G. W. Moon, N. Pliatsikas, T. Kehagias, G. P. Dimitrakopulos, P. P. Patsalas, R. Li, and T. D. Anthopoulos, Adv. Funct. Mater., 1606407 (2017).
  12. M. Ortel and V. Wagner, J. Cryst. Growth, 363, 185 (2013).
  13. Q. Ahsanulhaq, A. Umar and Y. B. Hahn, Nanotechnology, 18, 115603 (2007).
  14. C. X. Xu and X. W. Sun, Jpn.J. Appl. Phys., 42, 4949 (2003).
  15. S. Chen, R. M. Wilson and R. Binions, J. Mater. Chem. A, 3, 5794 (2015).
  16. N. Qin, Q. Xiang, H. B. Zhao, J. C. Zhang and J. Q. Xu, Cryst. Eng. Comm., 16, 7062 (2014).
  17. X. L. Chen, X. H. Geng, J. M. Xue, D. K. Zhang, G. F. Hou and Y. Zhao, J. Cryst. Growth, 296, 43 (2006).
  18. T. Dedova, O. Volobujeva and J. Klauson, Nanoscale. Res. Lett., 2, 391 (2007).
  19. T. Terasako, S. Shirakata and T. Kariya, Thin Solid Films, 420, 13 (2002).
  20. R. A. Laudise and A. A. Ballman, J. Phys. Chem., 64, 688 (1960).
  21. X. Cai, B. Han, S. Deng, Y. Wang, C. Dong, Y. Wang and I. Djerdj, Cryst. Eng. Comm., 16, 7761 (2014).
  22. D. J. E. Harvie and D. F. Fletcher, Int. J. Heat Mass Transfer, 44, 2643 (2001).
  23. J. C. Vioguie and J. Spitz, J. Electrochem. Soc., 122, 585 (1975).
  24. D. Polsongkram, P. Chamninok, S. Pukird , L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Physica B, 403, 3713 (2008).
  25. M. Ortel, V. Wagner, J. Cryst. Growth, 363, 185. (2013).
  26. U. P. Muecke, G. L. Messing, L. J. Gauckler, Thin Solid Films, 517, 1515 (2009).
  27. S. Kumar Shah, S. Kumar Chatterjee and A. Bhattarai, J. Chem., 2016, 2176769 (2016).
  28. X. Zhu, T. Kawaharamura, A. Z. Stieg, C. Biswas, L. Li, Z. Ma, M. A. Zurbuchen, Q. Pei, and K. L. Wang, Nano Lett., 15, 4948 (2015).
  29. Y. M. Qiao, S. Chandra, Int. J. Heat Mass Transfer, 39, 1379 (1996).
  30. M. Shirota, M. A. J. Van Limbeek, C. Sun, A. Prosperetti and D. Lohse, Phys. Rev. Lett., 116, 064501 (2016).
  31. W. J. Li, E. W. Sji, W. Z. Zhong and Z. W. Yin, J. Cryst. Growth, 203, 186 (1999).
  32. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu and D. Que, J. Phys. Chem. B, 10, 3955 (2004).