DOI QR코드

DOI QR Code

Growth Mechanism Evolution of ZnO Nanostructures by Leidenfrost Effect in Ultrasonic Spray Pyrolysis Deposition

초음파 분무 열분해법에 의한 ZnO 나노구조 성장시 Leidenfrost 효과에 의한 성장 거동 변화

  • Han, In Sub (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 한인섭 (서울과학기술대학교 신소재공학과) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2017.09.25
  • Accepted : 2017.10.17
  • Published : 2017.11.27

Abstract

We investigated a Leidenfrost effect in the growth of ZnO nanostructures on silicon substrates by ultrasonic-assisted spray pyrolysis deposition(SPD). Structural and optical properties of the ZnO nanostructures grown by varying the growth parameters, such as substrate temperature, source concentration, and suction rate of the mist in the chambers, were investigated using field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. Structural investigations of the ZnO nanostructures showed abnormal evolution of the morphologies with variation of the substrate temperatures. The shape of the ZnO nanostructures transformed from nanoplate, nanorod, nanopencil, and nanoprism shapes with increasing of the substrate temperature from 250 to $450^{\circ}C$; these shapes were significantly different from those seen for the conventional growth mechanisms in SPD. The observed growth behavior showed that a Leidenfrost effect dominantly affected the growth mechanism of the ZnO nanostructures.

Acknowledgement

Supported by : SeoulTech(Seoul National University of Science and Technology)

References

  1. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Cho, J. Appl. Phys., 105, 013502 (2012).
  2. M. Ardyanian and N. Sedigh, Bull. Mater. Sci., 37, 1309 (2014). https://doi.org/10.1007/s12034-014-0076-4
  3. M. B. Rahman, S. H. Keshmirl, Sens. Lett., 7, 1 (2009). https://doi.org/10.1166/sl.2009.1001
  4. S. Yun, J. Lee, J. Yang and S. Lim., Physica B, 405, 413 (2010). https://doi.org/10.1016/j.physb.2009.08.297
  5. R. Jaramillo and S. Ramanathan, Sol. Energy Mater. Sol. Cells, 95, 602 (2011). https://doi.org/10.1016/j.solmat.2010.09.025
  6. H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 445, 263 (2003). https://doi.org/10.1016/S0040-6090(03)01158-1
  7. S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang and W. F. Hsieh, J. Cryst. Growth, 287, 78 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047
  8. D. Y. Lee, J. W. Lee, G. H. An, D. H. Riu and H. J. Ahn, Korean J. Mater. Res., 26, 258 (2016). https://doi.org/10.3740/MRSK.2016.26.5.258
  9. D. Y. Shin, J. W. Beav, B. R. Koo and H. J. Ahn, Korean J. Mater. Res., 27, 390 (2017). https://doi.org/10.3740/MRSK.2017.27.7.390
  10. I. S. Han and I. K. Park, Korean J. Mater. Res., 27, 403 (2017). https://doi.org/10.3740/MRSK.2017.27.8.403
  11. I. Isakov, H. Faber, M. Grell, G. W. Moon, N. Pliatsikas, T. Kehagias, G. P. Dimitrakopulos, P. P. Patsalas, R. Li, and T. D. Anthopoulos, Adv. Funct. Mater., 1606407 (2017).
  12. M. Ortel and V. Wagner, J. Cryst. Growth, 363, 185 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.043
  13. Q. Ahsanulhaq, A. Umar and Y. B. Hahn, Nanotechnology, 18, 115603 (2007). https://doi.org/10.1088/0957-4484/18/11/115603
  14. C. X. Xu and X. W. Sun, Jpn.J. Appl. Phys., 42, 4949 (2003). https://doi.org/10.1143/JJAP.42.4949
  15. S. Chen, R. M. Wilson and R. Binions, J. Mater. Chem. A, 3, 5794 (2015). https://doi.org/10.1039/C5TA00446B
  16. N. Qin, Q. Xiang, H. B. Zhao, J. C. Zhang and J. Q. Xu, Cryst. Eng. Comm., 16, 7062 (2014). https://doi.org/10.1039/C4CE00637B
  17. X. L. Chen, X. H. Geng, J. M. Xue, D. K. Zhang, G. F. Hou and Y. Zhao, J. Cryst. Growth, 296, 43 (2006). https://doi.org/10.1016/j.jcrysgro.2006.08.028
  18. T. Dedova, O. Volobujeva and J. Klauson, Nanoscale. Res. Lett., 2, 391 (2007). https://doi.org/10.1007/s11671-007-9072-6
  19. T. Terasako, S. Shirakata and T. Kariya, Thin Solid Films, 420, 13 (2002).
  20. R. A. Laudise and A. A. Ballman, J. Phys. Chem., 64, 688 (1960). https://doi.org/10.1021/j100834a511
  21. X. Cai, B. Han, S. Deng, Y. Wang, C. Dong, Y. Wang and I. Djerdj, Cryst. Eng. Comm., 16, 7761 (2014). https://doi.org/10.1039/C4CE00899E
  22. D. J. E. Harvie and D. F. Fletcher, Int. J. Heat Mass Transfer, 44, 2643 (2001). https://doi.org/10.1016/S0017-9310(00)00304-5
  23. J. C. Vioguie and J. Spitz, J. Electrochem. Soc., 122, 585 (1975). https://doi.org/10.1149/1.2134266
  24. D. Polsongkram, P. Chamninok, S. Pukird , L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Physica B, 403, 3713 (2008). https://doi.org/10.1016/j.physb.2008.06.020
  25. M. Ortel, V. Wagner, J. Cryst. Growth, 363, 185. (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.043
  26. U. P. Muecke, G. L. Messing, L. J. Gauckler, Thin Solid Films, 517, 1515 (2009). https://doi.org/10.1016/j.tsf.2008.08.158
  27. S. Kumar Shah, S. Kumar Chatterjee and A. Bhattarai, J. Chem., 2016, 2176769 (2016).
  28. X. Zhu, T. Kawaharamura, A. Z. Stieg, C. Biswas, L. Li, Z. Ma, M. A. Zurbuchen, Q. Pei, and K. L. Wang, Nano Lett., 15, 4948 (2015). https://doi.org/10.1021/acs.nanolett.5b01157
  29. Y. M. Qiao, S. Chandra, Int. J. Heat Mass Transfer, 39, 1379 (1996). https://doi.org/10.1016/0017-9310(95)00220-0
  30. M. Shirota, M. A. J. Van Limbeek, C. Sun, A. Prosperetti and D. Lohse, Phys. Rev. Lett., 116, 064501 (2016). https://doi.org/10.1103/PhysRevLett.116.064501
  31. W. J. Li, E. W. Sji, W. Z. Zhong and Z. W. Yin, J. Cryst. Growth, 203, 186 (1999). https://doi.org/10.1016/S0022-0248(99)00076-7
  32. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu and D. Que, J. Phys. Chem. B, 10, 3955 (2004).