DOI QR코드

DOI QR Code

전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors

  • 이도영 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Lee, Do-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2017.09.20
  • 심사 : 2017.10.19
  • 발행 : 2017.11.27

초록

Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

과제정보

연구 과제 주관 기관 : Seoul National University of Science and Technology

참고문헌

  1. A. Lewandowski, P. Jakobczyk and M. Galinski, Electrochim. Acta, 86, 225 (2012). https://doi.org/10.1016/j.electacta.2012.05.060
  2. M. N. Habashi and S. K. Asl, Korean J. Mater. Res., 27, 248 (2017). https://doi.org/10.3740/MRSK.2017.27.5.248
  3. D. -Y. Lee, G. -H. An and H. -J. Ahn, J. Ind. Eng. Chem., 52, 121 (2017). https://doi.org/10.1016/j.jiec.2017.03.032
  4. H. -J. Ahn, J. I. Sohn, Y. -S. Kim, H. -S. Shim, W. B. Kim and T. -Y. Seong, Electrochem. Commun., 8, 513 (2006). https://doi.org/10.1016/j.elecom.2006.01.018
  5. I. Yang, G. Lee and J. C. Jung, Korean J. Mater. Res., 26, 696 (2016). https://doi.org/10.3740/MRSK.2016.26.12.696
  6. P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu and Z. Lei, Carbon, 93, 315 (2015). https://doi.org/10.1016/j.carbon.2015.05.056
  7. L. Ji, Z. Lin, A. J. Medford and X. Zhang, Carbon, 47, 3346 (2009). https://doi.org/10.1016/j.carbon.2009.08.002
  8. G. -H. An and H. -J. Ahn, Carbon, 65, 87 (2013). https://doi.org/10.1016/j.carbon.2013.08.002
  9. Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun and B. K. Tay, Solid State Ionics, 180, 1525 (2009). https://doi.org/10.1016/j.ssi.2009.10.001
  10. A. Cao, C. Xu, J. Liang, D. Wu and B. Wei, Chem. Phys. Lett., 344, 13 (2001). https://doi.org/10.1016/S0009-2614(01)00671-6
  11. W. -Q. Han and A. Zettl, Nano Lett., 3, 681 (2003). https://doi.org/10.1021/nl034142d
  12. G. -H. An, D. -Y. Lee and H. -J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017). https://doi.org/10.1021/acsami.7b01286
  13. S. Ohara, T. Mousavand, M. Umetsu, S. Takami, T. Adschiri, Y. Kuroki and M. Takata, Soild State Ionics, 172, 261 (2004). https://doi.org/10.1016/j.ssi.2004.02.044
  14. C. Wan and J. Li, Mater. Design, 83, 620 (2015). https://doi.org/10.1016/j.matdes.2015.06.043
  15. G. -H. An, B. -R. Koo and H. -J. Ahn, Phys. Chem. Chem. Phys., 18, 6587 (2016). https://doi.org/10.1039/C6CP00035E
  16. G. -H. An, H. -J. Ahn and W. -K. Hong, J. Power Sources, 274, 536 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.086
  17. M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett., 8, 3498 (2008). https://doi.org/10.1021/nl802558y
  18. Y. -G. Lee, G. -H. An and H. -J. Ahn, Korean J. Mater. Res., 27, 192 (2017). https://doi.org/10.3740/MRSK.2017.27.4.192
  19. P. R. Choi, J. C. Jung, Y. -S. Lim and M. -S. Kim, Korean J. Mater. Res., 26, 460 (2016). https://doi.org/10.3740/MRSK.2016.26.9.460
  20. G. -H. An and H. -J. Ahn, ECS Soild State Lett., 2, M33 (2013). https://doi.org/10.1149/2.005305ssl
  21. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrogen, Energ., 34, 4889 (2009). https://doi.org/10.1016/j.ijhydene.2009.04.005
  22. G. Gryglewicz, J. Machnikowski, E. L. Grabowska, G. Lota and E. Frackowiak, Electrochim. Acta, 50, 1197 (2005). https://doi.org/10.1016/j.electacta.2004.07.045