DOI QR코드

DOI QR Code

Solution Processed Porous Fe2O3 Thin Films for Solar-Driven Water Splitting

  • Suryawanshi, Mahesh P. (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University) ;
  • Kim, Seonghyeop (R & D Division, Feelstone Inc.) ;
  • Ghorpade, Uma V. (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University) ;
  • Suryawanshi, Umesh P. (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University) ;
  • Jang, Jun Sung (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University) ;
  • Gang, Myeng Gil (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University) ;
  • Kim, Jin Hyeok (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University) ;
  • Moon, Jong Ha (Optoelectronic Convergence Research Center, Department of Material Science and Engineering, Chonnam National University)
  • Received : 2017.10.18
  • Accepted : 2017.11.02
  • Published : 2017.11.27

Abstract

We report facile solution processing of mesoporous hematite (${\alpha}-Fe_2O_3$) thin films for high efficiency solar-driven water splitting. $Fe_2O_3$ thin films were prepared on fluorine doped tin oxide(FTO) conducting substrates by spin coating of a precursor solution followed by annealing at $550^{\circ}C$ for 30 min. in air ambient. Specifically, the precursor solution was prepared by dissolving non-toxic $FeCl_3$ as an Fe source in highly versatile dimethyl sulfoxide(DMSO) as a solvent. The as-deposited and annealed thin films were characterized for their morphological, structural and optical properties using field-emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectroscopy. The photoelectrochemical performance of the precursor (${\alpha}-FeOOH$) and annealed (${\alpha}-Fe_2O_3$) films were characterized and it was found that the ${\alpha}-Fe_2O_3$ film exhibited an increased photocurrent density of ${\sim}0.78mA/cm^2$ at 1.23 V vs. RHE, which is about 3.4 times higher than that of the ${\alpha}-FeOOH$ films ($0.23mA/cm^2$ at 1.23 V vs. RHE). The improved performance can be attributed to the improved crystallinity and porosity of ${\alpha}-Fe_2O_3$ thin films after annealing treatment at higher temperatures. Detailed electrical characterization was further carried out to elucidate the enhanced PEC performance of ${\alpha}-Fe_2O_3$ thin films.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. A. Fujishima and K. Honda, Nature, 238, 37 (1972). https://doi.org/10.1038/238037a0
  2. Y. C. Ling, G. M. Wang, D. A. Wheeler, J. Z. Zhang and Y. Li, Nano Lett., 11, 2119 (2011). https://doi.org/10.1021/nl200708y
  3. M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, M. G. Gang, X. Wang, H. Park, S. H. Kang and J. H. Kim, ACS Catal., 7, 8077 (2017). https://doi.org/10.1021/acscatal.7b02102
  4. T. W. Kim and K. S. Choi, Science, 343, 990 (2014). https://doi.org/10.1126/science.1246913
  5. R. Liu, Y. J. Lin, l. Y. Chou, S. W. Sheehan, W. S. He, G. Zhang, H. J. M. Hou and D. W. Wang, Angew. Chem. Int. Edit., 50, 499 (2011). https://doi.org/10.1002/anie.201004801
  6. G. M. Wang, Y. C. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang, and Y. Li, Nano Lett.,11, 3503 (2011). https://doi.org/10.1021/nl202316j
  7. J. Brillet, M. Gratzel and K. Sivula, Nano Lett., 10, 4155 (2010). https://doi.org/10.1021/nl102708c
  8. K. Sivula, T. Zboril, F. Le Formal, R. Robert, A. Wiedenkaff, J. Tucek, J. Frydrych and M. Gratzel, J. Am. Chem. Soc., 132, 7436 (2010). https://doi.org/10.1021/ja101564f
  9. A. A. Tahir, K. G. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar and V. Mckee, Chem. Mater., 21, 3763 (2009). https://doi.org/10.1021/cm803510v
  10. C. D. Park, D. Magana and A. E. Stiegman, Chem. Mater., 19, 677 (2007). https://doi.org/10.1021/cm0617079
  11. J. A. Glasscock, P. R. F. Barnes, I. C. Plumb and N. Savvides, J. Phys. Chem. C, 111, 16477 (2007). https://doi.org/10.1021/jp074556l
  12. A. Duret and M. Gratzel, J. Phys. Chem. B, 109, 17184 (2005). https://doi.org/10.1021/jp044127c
  13. J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen and J. S. Lee, Sci. Rep-Uk 3, (2013).
  14. T. Yamashita and P. Hayes, Appl. Surf. Sci., 254, 2441 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063
  15. I. Cesar, A. Kay, J. A. G. Martinez and M. Gratzel, J. Am. Chem. Soc., 128, 4582 (2006). https://doi.org/10.1021/ja060292p
  16. L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren and J. H. Guo, Adv. Mater., 17, 2320 (2005). https://doi.org/10.1002/adma.200500992