DOI QR코드

DOI QR Code

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes

제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분

  • Lee, Sang-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hong, Tae-Woon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 이상인 (서울과학기술대학교 신소재공학과) ;
  • 홍태운 (서울과학기술대학교 신소재공학과) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2017.09.25
  • Accepted : 2017.10.11
  • Published : 2017.11.27

Abstract

In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. O. Kwon and K. J. Lee, J. Korean Inst. Met. Mater., 36, 1866 (1998).
  2. B. Karthik, R. Veerababu and D. V. V. Satyanarayana, Met. Mater. Inter., 22, 413 (2016). https://doi.org/10.1007/s12540-016-5611-y
  3. B. Hwang, J. H. Shim, M. G. Lee, J. Lee, J. H. Jung, B. S. Kim and S. B. Won, Korea J. Met. Mater., 54, 862 (2016). https://doi.org/10.3365/KJMM.2016.54.12.862
  4. J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto and I. Takeuchi, Proc. 13th Int. Offshore and Polar Eng. Conf., ISOPE, Hawaii, USA, p. 10 (2003).
  5. US Patent Pub. No. 20070193666.
  6. G. E. Dieter, Mechanical Metallurgy, SI Metric Edition, New York, McGraw-hill (1989). 184.
  7. C. Zener and J. H. Holloman, J. Appl. Phys., 15, 22 (1944). https://doi.org/10.1063/1.1707363
  8. E. A. Simielli, S. Yue and J. J. Jonas, Met. Trans. A, 23, 597 (1992). https://doi.org/10.1007/BF02801177
  9. M. J. Luton, R. Dorvel and R. A. Petkovic, Met. Trans. A, 11, 411 (1980). https://doi.org/10.1007/BF02654565
  10. K. J. Irvine, F. B. Pickering and T. Gladman, J. Iron and Steel Inst., 205, 161 (1967).
  11. T. Gladman and D. Dulieu, Met. Sci., 8, 167 (1974). https://doi.org/10.1179/msc.1974.8.1.167
  12. T. Gladman, I. D. McIvor and F. B. Pickering, J. Iron and Steel Inst., 209, 380 (1971).
  13. P. M. Kelly, A. Jostsons and R. G. Blake, Acta Metall. Mater., 38, 1075 (1990). https://doi.org/10.1016/0956-7151(90)90180-O
  14. S. Matsuda and N. Okumura, Trans. Iron Steel Inst. Jpn., 18, 198 (1978).
  15. I. Tamura, H. Sekine and T. Tanaka, Thermomechanical processing of high-strength low-alloy steels, Butterworth-Heinemann (2013).
  16. W. B. Morrison, J. Iron and Steel Inst., 210, 618 (1972).
  17. R. A. P. Djaic and J. J. Jonas, Metall. Trans., 4, 621 (1973). https://doi.org/10.1007/BF02648720
  18. J. J. Jonas and M. G. Akben, Metall. Forum, 4, 92 (1981).
  19. J. J. Jonas and I. Weiss, Met. Sci., 13, 238 (1979). https://doi.org/10.1179/msc.1979.13.3-4.238
  20. T. Tanaka, J. Soc Materials Sci. Japan, 30, 611 (1980).
  21. M. Umemoto, I. Yamura and T. Osuka, Tetsu-to-Hagane, 68, 1384 (1982).
  22. R. W. Vanderbeck, Weld. J., 37, 114 (1958).
  23. W. Barr and C. F. Tipper, J. Iron and Steel Inst., 157, 223 (1947).
  24. W. J. Berry, Iron Coal Trade Rev., 66, 900 (1928).
  25. N. Ishikawa, K. Yasuda, H. Sueyoshi, S. Endo, H. Ikeda, T. Morikawa and K. Higashida, Acta Meter., 97, 257 (2015). https://doi.org/10.1016/j.actamat.2015.06.037
  26. K. Nagai, Y. Shinohara, S. Sakamoto, E. Tsuru and H. Asahi, Proc. 19th Int. Offshore and Polar Eng. Conf., ISOPE, Osaka, Japan, p 56 (2009).
  27. H. K. Sung, D. H. Lee, S. Lee, H. S. Kim, Y. Ro, C. S. Lee, B. Hwang and S. Y. Shin, Metall. Mater. Trans. A, 47, 2726 (2016). https://doi.org/10.1007/s11661-016-3453-3
  28. K. Yasuda, H. Sueyoshi, N. Ishikawa, T. Morikawa and K. Higashida, Proc. 25th Int. Offshore and Polar Eng. Conf., ISOPE, Hawaii, USA, p. 639 (2015).
  29. H. K. Sung, D. H. Lee, S. Y. Shin, S. Lee, Y. Ro, C. S. Lee and B. Hwang, Metall. Mater. Trans. A, 46, 3989 (2015). https://doi.org/10.1007/s11661-015-2984-3
  30. T. Hara, Y. Shinohara, Y. Terada, H. Asahi and N. Doi, Proc. 19th Int. Offshore and Polar Eng. Conf., ISOPE, Osaka, Japan, (2009). 73.
  31. K. B. Kang, J. S. Kang, J. Y. Yoo, D. H. Seo, I. S. Suh and G. B. An, Advanced Steels (2011) 281.
  32. Atlas for Bainitic Microstructures, ISIJ, 1, Tokyo (1992).
  33. G. Krauss and S.W. Thompson, ISIJ, 35 (1995) 937. https://doi.org/10.2355/isijinternational.35.937
  34. S. W. Thompson, D. J. Colvin and G. Krauss, Metall. Trans. A, 21, 1493 (1990). https://doi.org/10.1007/BF02672564
  35. B. L. Bramfitt and J. G. Speer, Metall. Trans. A, 21, 817 (1990). https://doi.org/10.1007/BF02656565
  36. J. S. Kang, J-B Seol and C. G. Park, Mater. Charact., 79, 110 (2013). https://doi.org/10.1016/j.matchar.2013.02.009
  37. T. Araki, M. Enomoto and K. Shibata, Mate. Trans. JIM, 32, 729 (1991). https://doi.org/10.2320/matertrans1989.32.729
  38. D. Quidort and Y. Brechet, Scr. Mater., 47, 151 (2002). https://doi.org/10.1016/S1359-6462(02)00121-5
  39. S. S. Babu and H. K. D. H. Bhadeshia, Mater. Trans. JIM, 32, 679 (1991). https://doi.org/10.2320/matertrans1989.32.679
  40. H. K. D. H. Bhadeshia and J. W. Christian, Metall. Trans. A, 21, 767 (1990). https://doi.org/10.1007/BF02656561
  41. R. A. Farrar and P. L. Harrison, J. Mater. Sci., 22, 3812 (1987). https://doi.org/10.1007/BF01133327
  42. A. Ramazani, K. Mukherjee, U. Prahl and W. Bleck, Metall. Mater. Trans. A, 43, 3850 (2012). https://doi.org/10.1007/s11661-012-1196-3
  43. A. Kundu and D. P. Field, Mater. Sci. Eng. A, 667, 435 (2016). https://doi.org/10.1016/j.msea.2016.05.022
  44. R. K. Dutta, R. H. Petrov, R. Delhez, M. J. M. Hermans, I. M. Richardson and A. J. Bottger, Acta Meter., 61, 1592 (2013). https://doi.org/10.1016/j.actamat.2012.11.036

Cited by

  1. Correlation of Microstructural Factors with the Yield Ratio and Uniform Elongation in API X80 Linepipe Steels vol.56, pp.6, 2018, https://doi.org/10.3365/KJMM.2018.56.6.413