DOI QR코드

DOI QR Code

High textured carbon from chemical vapor infiltration with ethanol precursor and its rate of pyrolytic carbon deposition

  • Choi, Si Won (Department of Chemical Engineering, Hongik University) ;
  • Joo, Kyung Do (Department of Chemical Engineering, Hongik University) ;
  • Chung, Gui-Yung (Department of Chemical Engineering, Hongik University)
  • Received : 2017.03.13
  • Accepted : 2017.06.20
  • Published : 2017.10.01

Abstract

Preparation of C/C composites with ethanol precursor was studied and the role of ethanol in obtaining high textured (HT) carbon was confirmed. HT carbon was obtained more with ethanol precursor than with propane precursor as reported by Ren et al. The pyrolytic carbon deposition rate constant from ethanol precursor, which has never been reported before in any other research, was obtained. It was confirmed that a proper mixture precursor of ethanol and propane could be used in the process of temperature gradient chemical vapor infiltration (TG-CVI) on behalf of the uniform deposition throughout the preform and the deposition with more HT carbon,. The pyrolytic carbon deposition rate constant for the CVI with propane precursor obtained in this research was 2.2-times greater than that reported by Vaidyaraman.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Hongik University

References

  1. X. Yang, Z. Su, Q. Huang, X. Fang and L. Chai, J. Mater. Sci. Technol., 29, 702 (2013).
  2. T. Chen, B. Reznik, D. Gerthsen, W. Zhang and K. Huttinger, Carbon, 43, 3088 (2005). https://doi.org/10.1016/j.carbon.2005.06.035
  3. H. C. Shao, H.Y. Xia, G.W. Liu, G. J. Qiao, Z. C. Xiao, J. M. Su, X. H. Zhang and Y. J. Li, J. Mater. Eng. Perform., 23, 133 (2014). https://doi.org/10.1007/s11665-013-0667-z
  4. H. J. Li, X. H. Hou and Y. X. Chen, Carbon, 38, 423 (2000). https://doi.org/10.1016/S0008-6223(99)00122-0
  5. P. Dupel, R. Pailler and F. Langlais, J. Mater. Sci., 29, 1341 (1994). https://doi.org/10.1007/BF00975086
  6. S. Vaidyaraman, W. J. Lackey, G. B. Freeman, P. K. Agrawal and M.D. Langman, J. Mater. Res., 10, 1469 (1995). https://doi.org/10.1557/JMR.1995.1469
  7. B. J. Kim, D. Han, S. Yoo and S. G. Im, Korean J. Chem. Eng., 34, 892 (2017). https://doi.org/10.1007/s11814-016-0303-3
  8. D.K. Rollins Sr., D. J. Rollins and A. D. Jones Jr., Chem. Eng. Res. Design, 85, 1390 (2007). https://doi.org/10.1016/S0263-8762(07)73179-9
  9. S. Vaidyaraman, W. J. Lackey, P.K. Agrawal, G.B. Freeman and M. A. Miller, Carbon, 34, 347 (1996). https://doi.org/10.1016/0008-6223(95)00190-5
  10. G.Y. Chung, B. J. McCoy, J.M. Smith and D.E. Cagliostro, AIChE J., 39, 1834 (1993). https://doi.org/10.1002/aic.690391111
  11. G.Y. Chung, B. J. McCoy, J.M. Smith and D.E. Cagliostro, Chem. Eng. Sci., 47, 311 (1992). https://doi.org/10.1016/0009-2509(92)80022-5
  12. G.Y. Chung and B. J. McCoy, J. Am. Ceram. Soc., 74, 746 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06919.x
  13. M. S. Cho, J.W. Kim and G.Y. Chung, Korean J. Chem. Eng., 13, 515 (1996). https://doi.org/10.1007/BF02706003
  14. T. Tago, M. Kawase, Y. Ikuta and K. Hashimoto, Chem. Eng. Sci., 56, 2161 (2001). https://doi.org/10.1016/S0009-2509(00)00492-9
  15. K. H. Bang, G.Y. Chung and H. H. Koo, Korean J. Chem. Eng., 28, 272 (2011). https://doi.org/10.1007/s11814-010-0352-y
  16. D.G. Hwang and G.Y. Chung, Korean J. Chem. Eng., 29, 1266 (2012). https://doi.org/10.1007/s11814-011-0303-2
  17. K. Jiang, H. Li and M. Wang, Mater. Lett., 54, 419 (2002). https://doi.org/10.1016/S0167-577X(01)00603-6
  18. H. J. Li, K.Y. Jiang and K.Z. Li, Mater. Lett., 57, 2366 (2003). https://doi.org/10.1016/S0167-577X(02)01236-3
  19. J.H. Kim, H. M. Lee, D.W. Kang, K.M. Lee and C. K. Kim, Korean J. Chem. Eng., 33, 2711 (2016). https://doi.org/10.1007/s11814-016-0151-1
  20. J. Ren, K. Li, S. Zhang, X. Yao and H. Li, Ceram. Int., 42, 2887 (2016). https://doi.org/10.1016/j.ceramint.2015.10.059
  21. J. Ren, K. Li, S. Zhang, X. Yao and S. Tian, Mater. Design, 65, 174 (2015). https://doi.org/10.1016/j.matdes.2014.08.036
  22. P. Delhaes, Carbon, 40, 641 (2002). https://doi.org/10.1016/S0008-6223(01)00195-6
  23. B. Reznik, D. Gerthsen and K. J. Huttinger, Carbon, 39, 215 (2001). https://doi.org/10.1016/S0008-6223(00)00116-0
  24. S. Vaidyaraman, W. J. Lackey, P. K. Agrawal and T. L. Starr, Carbon, 34, 1123 (1996). https://doi.org/10.1016/0008-6223(96)00086-3
  25. J. Li, A. Kazakov and F. L. Dryer, J. Phys. Chem., 108, 7671 (2004). https://doi.org/10.1021/jp0480302
  26. P.A. Tesner, in Chemistry and Physics of Carbon, Vol. 19, P.A. Thrower Ed., Marcel Dekker, New York (1984).