Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch

  • Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Donggeun (School of Mechanical Engineering, Pusan National University) ;
  • Yang, Sangsun (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2018.01.12
  • Accepted : 2018.01.26
  • Published : 2018.01.31


In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.


Supported by : National Research Council of Science & Technology (NST)


  1. J. H. Seo and B. G. Hong, Nucl. Eng. Technol. 44, 9 (2012).
  2. M. I. Boulos, Pure Appl. Chem. 68, 1007-1010 (1996).
  3. M. K. Mun, W. O. Lee, J. W. Park, D. S. Kim, G. Y. Yeom, and D. W. Kim, Appl. Sci. Converg. Technol. 26, 164-173 (2017)
  4. V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi, and M. Shigeta, Plasma Sources Sci, Technol. 21, 025001 (2012).
  5. A. B. Murphy, J. Phys. D: Appl. Phys. 34, R151-R173 (2001).
  6. A. Gleizes, J. J. Gonzalez, and P. Freton, J. Phys. D: Appl. Phys. 38, R153-R183 (2005).
  7. J. P. Trelles, J. V. R. Heberlein, and E. Pfender, J. Phys. D: Appl. Phys. 40, 5937-5952 (2007).
  8. M. Hur and S. H. Hong, J. Phys. D: Appl. Phys. 35, 1946-1954 (2002).
  9. M. Shigeta and T. Watanabe, J. Phys. D: Appl. Phys. 40, 2407-2419 (2007).
  10. A. Prakash, A. P. Bapat, and M. R. Zachariah, Aerosol Sci. Technol. 37, 892-898 (2003).
  11. M. Shigeta and T. Watanabe, J. Appl. Phys. 103, 074903 (2008).
  12. A. Douglass, and V. Land, L. Matthews, T. Hyde, Phys. Plasma 18, 083706 (2011).
  13. J. Grifoll and J. Rosell-Llompart, J. Aerosol Sci. 47, 78-93 (2012).
  14. A. K. Arumugham-Achari, J. Grifoll, J. Rosell-Llompart, and J. Aerosol Sci. 65, 121-133 (2013).
  15. J. M. Park, K. S. Kim, T. H. Hwang, S. H. Hong, and IEEE T. Plasma Sci. 32, 479-487 (2004).
  16. S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere (1980).
  17. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).
  18. M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons (2005).
  19. M. I. Boulos, P. Fauchasis, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, New York: Plenum Press (1994).
  20. K. S. Drellishak, C. F. Knopp, and A. B. Cambel, Phys. Fluids 6, 1280 (1963).
  21. D.-Y. Yang, Y. Kim, M. Y. Hur, H. J. Lee, Y.-J. Kim, T.-S. Lim, K.-B. Kim, and S. Yang, Metals 5, 2058-2069 (2015).
  22. M. Shiratani, H. Kawasaki, T. Fukuzawa, T. Yoshioka, Y. Ueda, S. Singh, and Y. Watanabe, J. Appl. Phys. 79, 104-109 (1996).
  23. R. L. Picard, A. H. Markosyan, D. H. Porter, S. L. Girshick, and M. J. Kushner, Plasma Chem. Plasma Process 36, 941-972 (2016).
  24. S.-W. Yoo, S.-J. You, J.-H. Kim, D.-J. Seong, B.-H. Seo, and N.-M. Hwang, J. Phys. D: Appl. Phys. 50, 035201 (2017).