DOI QR코드

DOI QR Code

Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch

  • Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Donggeun (School of Mechanical Engineering, Pusan National University) ;
  • Yang, Sangsun (Powder and Ceramics Division, Korea Institute of Materials Science) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2018.01.12
  • Accepted : 2018.01.26
  • Published : 2018.01.31

Abstract

In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.

Acknowledgement

Supported by : National Research Council of Science & Technology (NST)

References

  1. J. H. Seo and B. G. Hong, Nucl. Eng. Technol. 44, 9 (2012). https://doi.org/10.5516/NET.77.2012.002
  2. M. I. Boulos, Pure Appl. Chem. 68, 1007-1010 (1996). https://doi.org/10.1351/pac199668051007
  3. M. K. Mun, W. O. Lee, J. W. Park, D. S. Kim, G. Y. Yeom, and D. W. Kim, Appl. Sci. Converg. Technol. 26, 164-173 (2017)
  4. V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi, and M. Shigeta, Plasma Sources Sci, Technol. 21, 025001 (2012). https://doi.org/10.1088/0963-0252/21/2/025001
  5. A. B. Murphy, J. Phys. D: Appl. Phys. 34, R151-R173 (2001). https://doi.org/10.1088/0022-3727/34/20/201
  6. A. Gleizes, J. J. Gonzalez, and P. Freton, J. Phys. D: Appl. Phys. 38, R153-R183 (2005). https://doi.org/10.1088/0022-3727/38/9/R01
  7. J. P. Trelles, J. V. R. Heberlein, and E. Pfender, J. Phys. D: Appl. Phys. 40, 5937-5952 (2007). https://doi.org/10.1088/0022-3727/40/19/024
  8. M. Hur and S. H. Hong, J. Phys. D: Appl. Phys. 35, 1946-1954 (2002). https://doi.org/10.1088/0022-3727/35/16/308
  9. M. Shigeta and T. Watanabe, J. Phys. D: Appl. Phys. 40, 2407-2419 (2007). https://doi.org/10.1088/0022-3727/40/8/S20
  10. A. Prakash, A. P. Bapat, and M. R. Zachariah, Aerosol Sci. Technol. 37, 892-898 (2003). https://doi.org/10.1080/02786820300933
  11. M. Shigeta and T. Watanabe, J. Appl. Phys. 103, 074903 (2008). https://doi.org/10.1063/1.2903918
  12. A. Douglass, and V. Land, L. Matthews, T. Hyde, Phys. Plasma 18, 083706 (2011). https://doi.org/10.1063/1.3624552
  13. J. Grifoll and J. Rosell-Llompart, J. Aerosol Sci. 47, 78-93 (2012). https://doi.org/10.1016/j.jaerosci.2012.01.001
  14. A. K. Arumugham-Achari, J. Grifoll, J. Rosell-Llompart, and J. Aerosol Sci. 65, 121-133 (2013). https://doi.org/10.1016/j.jaerosci.2013.07.005
  15. J. M. Park, K. S. Kim, T. H. Hwang, S. H. Hong, and IEEE T. Plasma Sci. 32, 479-487 (2004). https://doi.org/10.1109/TPS.2004.828125
  16. S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere (1980).
  17. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2
  18. M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons (2005).
  19. M. I. Boulos, P. Fauchasis, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, New York: Plenum Press (1994).
  20. K. S. Drellishak, C. F. Knopp, and A. B. Cambel, Phys. Fluids 6, 1280 (1963). https://doi.org/10.1063/1.1706896
  21. D.-Y. Yang, Y. Kim, M. Y. Hur, H. J. Lee, Y.-J. Kim, T.-S. Lim, K.-B. Kim, and S. Yang, Metals 5, 2058-2069 (2015). https://doi.org/10.3390/met5042058
  22. M. Shiratani, H. Kawasaki, T. Fukuzawa, T. Yoshioka, Y. Ueda, S. Singh, and Y. Watanabe, J. Appl. Phys. 79, 104-109 (1996). https://doi.org/10.1063/1.360916
  23. R. L. Picard, A. H. Markosyan, D. H. Porter, S. L. Girshick, and M. J. Kushner, Plasma Chem. Plasma Process 36, 941-972 (2016). https://doi.org/10.1007/s11090-016-9721-6
  24. S.-W. Yoo, S.-J. You, J.-H. Kim, D.-J. Seong, B.-H. Seo, and N.-M. Hwang, J. Phys. D: Appl. Phys. 50, 035201 (2017). https://doi.org/10.1088/1361-6463/50/3/035201