Numerical Analysis of the Incident ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure

  • Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Oh, Sehun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Ho Jun (Memory Thin Film Technology Team, Samsung Electronics) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2018.01.16
  • Accepted : 2018.01.30
  • Published : 2018.01.31


The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.


Supported by : Pusan National University


  1. P. J. Kelly, and R. D. Arnell, Vaccum 56, 159-172 (2000).
  2. W. Gao and Z. Li, Ceram. Int. 30, 1155-1159 (2004).
  3. K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Tech. 204, 1661-1684 (2010).
  4. K. Ellmer and T. Welzel, J. Mater. Res. 27, 765-779 (2012).
  5. E. M. Park, D. H. Lee, and M. S. Suh, Appl. Sci. Converge. Technol. 25, 128-132 (2016).
  6. H. Ahn, D. Lee and Y. Um, Appl. Sci. Converge. Technol. 26, 11-15 (2017).
  7. S. H. Jeong and J. H. Boo, Thin Solid Films 447-448, 105-110 (2004)
  8. S. Mraz and J. M. Schneider, J. Appl. Phys. 100, 023503 (2006).
  9. M.-J. Keum and J.-H. Han J. Korean Phys. Soc. 53, 1580-1583 (2008).
  10. H. C. Nguyen, T. T. Trinh, T. Le, C. V. Tran, T. Tran, H. Park, and V. A. Dao, J. Yi, Semicond. Sci. Technol. 26, 105022 (2011).
  11. J. P. Verboncoeur, Plasma, Phys. Controlled Fusion 47, A231 (2005).
  12. C. H. Shon, J. K. Lee, H. J. Lee, Y. Yang, and T. H. Chung, IEEE T. Plasma Sci. 26, 1635-1644 (1998).
  13. C. H. Shon and J. K. Lee, Appl. Surf. Sci. 192, 258-269 (2002).
  14. S. Kuroiwa, T. Mine, T. Yakisawa, T. Makabe, J. Vac. Sci. Technol. B 23, 2218-2221 (2005).
  15. I. Kolev, A. Bogaerts, IEEE T. Plasma Sci. 34, 886-894 (2006).
  16. T. Makabe, T. Yakisawa, Mater. Sci. Forum 555, 65-71 (2007).
  17. Z. Hua-Yu, M. Zong-Xin, Chinese Phys. B 17, 1475-1479 (2008).
  18. V. K. Decyk. T. V. Singh, Comput. Phys. Comm. 185, 708-719 (2014).
  19. C. K. Birdsall, A. b. Langdon, Plasma Physics vis Computer Simulation, Taylor & Francis Group (2005)
  20. V. Vahedi, M. Surendra, Comput. Phys. Comm. 87, 179-198 (1995).
  21. P. Sigmund, Phys. Rev. 184, 383-416 (1969).
  22. M. P. Seah, T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010).
  23. R. Behrisch and W. Eckstein, Sputtering by particle Bombardment, Springer (2007).
  24. Y. Yamamura, H. Tawara, Atom. Data Nucl. Data 62, 149-253 (1996).
  25. V. Vahedi, G. DiPeso, J. Comput. Phys. 131, 149-163 (1997).