DOI QR코드

DOI QR Code

PSO-Based Nonlinear PI-type Controller Design for Boost Converter

  • Seo, Sang-Wha (Div. of Electrical and Electronic Engineering, Dongguk Univ.-Seoul) ;
  • Kim, Yong (Div. of Electrical and Electronic Engineering, Dongguk Univ.-Seoul) ;
  • Choi, Han Ho (Div. of Electrical and Electronic Engineering, Dongguk Univ.-Seoul)
  • Received : 2016.11.22
  • Accepted : 2017.09.01
  • Published : 2018.01.01

Abstract

This paper designs a nonlinear PI-type controller for the robust control of a boost DC-DC converter using a particle swarm optimization (PSO) algorithm. Based on the common knowledge that the transient responses can be improved if the P and I gains increase when the transient error is big, a nonlinear PI-type control design method is developed. A design procedure to autotune the nonlinear P and I gains is given based on a PSO algorithm. The proposed nonlinear PI-type controller is implemented in real time on a Texas Instruments TMS320F28335 floating-point DSP. Simulation and experimental results are given to demonstrate the effectiveness and practicality of the proposed method.

E1EEFQ_2018_v13n1_211_f0001.png 이미지

Fig. 1. Renewable energy system with integrated DC-DCboost converter

E1EEFQ_2018_v13n1_211_f0002.png 이미지

Fig. 2. Closed-loop boost converter control system

E1EEFQ_2018_v13n1_211_f0003.png 이미지

Fig. 3. Block diagram of the nonlinear PI-type controller

E1EEFQ_2018_v13n1_211_f0004.png 이미지

Fig. 4. PSO algorithm to autotune the nonlinear PI-typecontroller

E1EEFQ_2018_v13n1_211_f0005.png 이미지

Fig. 5. Simulation results with the proposed method underC1

E1EEFQ_2018_v13n1_211_f0006.png 이미지

Fig. 6. Simulation results with the proposed method underC2

E1EEFQ_2018_v13n1_211_f0007.png 이미지

Fig. 7. Simulation results with the conventional methodunder C1

E1EEFQ_2018_v13n1_211_f0008.png 이미지

Fig. 8. Simulation results with the conventional methodunder C2

E1EEFQ_2018_v13n1_211_f0009.png 이미지

Fig. 9. Experimental test setup

E1EEFQ_2018_v13n1_211_f0010.png 이미지

Fig. 10. Experimental results with the proposed methodunder C1

E1EEFQ_2018_v13n1_211_f0011.png 이미지

Fig. 11. Experimental results with the proposed methodunder C2

E1EEFQ_2018_v13n1_211_f0012.png 이미지

Fig. 12. Experimental results with the conventional methodunder C1

E1EEFQ_2018_v13n1_211_f0013.png 이미지

Fig. 13. Experimental results with the conventional methodunder C2

Table 1. Numerical comparison between conventional controller and proposed controller.

E1EEFQ_2018_v13n1_211_t0001.png 이미지

Acknowledgement

Supported by : National Research Foundation of Korea(NRF), Korea Institute of Energy Technology Evaluation and Planning(KETEP)

References

  1. H. Sira-Ramirez, R.A. Perez-Moreno, and M. Garcia- Esteban, "Passivity-based controllers for the stabilization of DC-to-DC power converters," Automatica, vol. 33, no. 4, pp. 499-513, 1997. https://doi.org/10.1016/S0005-1098(96)00207-5
  2. G. Escobar, R. Ortega, and H. Sira-Ramirez, "An experimental comparison of several nonlinear controllers for power converters," IEEE Contr. Syst. Magazine, vol. 19, no. 1, pp. 66-82, 1999. https://doi.org/10.1109/37.745771
  3. H. Sira-Ramirez, "On the generalized PI sliding mode control of DC-to-DC power converters: A tutorial," Int. J. Control, vol. 76, pp. 1018-1033, 2003. https://doi.org/10.1080/0020717031000099047
  4. S.K. Mazumder, A.H. Nayfeh, and D. Boroyevich, "Robust control of parallel dc/dc buck converters by combining integral-variable-structure and multiplesliding- surface control schemes," IEEE Tran. Power Elec., vol. 17, pp. 428-437, 2002. https://doi.org/10.1109/TPEL.2002.1004251
  5. S.-C. Tan, Y. M. Lai, and C.K. Tse, "Indirect sliding mode control of power converters via double integral sliding surface," IEEE Tran. Power Elec., vol. 23, pp. 600-611, 2008. https://doi.org/10.1109/TPEL.2007.915624
  6. S.K. Mazumder, and K. Acharya, "Multiple Lyapunov function based reaching criteria for orbital existence of switching power converters," IEEE Tran. Power Elec., vol. 23, pp. 1449-1471, 2008. https://doi.org/10.1109/TPEL.2008.921065
  7. L. Guo, J.Y. Hung, and R.M. Nelms, "Evaluation of DSP-based PID and fuzzy controllers for DC-DC converters," IEEE Trans. Ind. Electron. vol. 56, pp. 2237-2248, 2009. https://doi.org/10.1109/TIE.2009.2016955
  8. A.G. Perry, G. Feng, Y.F. Liu, and P.C. Sen, "A design method for PI-like fuzzy logic controllers for DC-DC converter," IEEE Trans. Ind. Electron., vol. 54, pp. 345-355, 2007.
  9. K.-W. Seo, and H.H. Choi "Simple fuzzy PID controllers for DC-DC converters," J. of Electrical Engineering & Technology, vol. 7, pp.724-729, 2012. https://doi.org/10.5370/JEET.2012.7.5.724
  10. L. Guo, J.Y. Hung, and R.M. Nelms, "Design of a fuzzy controller usiing variable structure approach for application to DC-DC converters," Electic Power Systems Research, vol. 83, pp. 104-109, 2012. https://doi.org/10.1016/j.epsr.2011.09.005
  11. S. Oucheriah, and L. Guo, "PWM-based adaptive sliding-mode control for boost DC-DC converters," IEEE Trans. Ind. Electron., vol. 60, pp. 3291-3294, 2013.
  12. Z.-Y. Zhao, Tomizuka, and S. Isaka, "Fuzzy gain scheduling of PID controllers," IEEE Trans. Syst. Man Cybern., vol. 23, pp. 1392-1398, 1993. https://doi.org/10.1109/21.260670
  13. N.K. Bose, E.I. Jury, E. Zeheb, "On robust Hurwitz and Schur polynomials," IEEE Trans. Automat. Contr., vol. 33, pp. 1166-1168, 1988. https://doi.org/10.1109/9.14442
  14. I. C. Trelea, "The particle swarm optimization algorithm: Convergence analysis and parameter selection," Information Processing Letters., vol. 85, pp. 317-325, 2003. https://doi.org/10.1016/S0020-0190(02)00447-7
  15. Y. Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.- C. Herandez, and R.G. Harley "Particle swarm optimization : Basic concepts, variants and applications in power systems," IEEE Trans. Evolutionary Computation, vol. 12, pp. 171-195, 2008. https://doi.org/10.1109/TEVC.2007.896686
  16. M. R. AlRashidi and M. E. El-Hawary, "A survey of particle swarm optimization applications in electric power operations," Electric Power Components and Systems, vol. 34, no. 12, pp. 1349-1357, Dec. 2006. https://doi.org/10.1080/15325000600748871
  17. K. Parsopoulos and M. Vrahatis, "Recent approaches to global optimization problems through particle swarm optimization," Natural Computing, vol. 1, pp. 235-306, May 2002. https://doi.org/10.1023/A:1016568309421
  18. Y, Shi, and R.C. Eberhart, "Empirical Study of Particle Swarm Optimization," Proceedings of Congress on Evolutionary Computation (CEC1999), 1999, pp. 1945-1950.
  19. P.J. Angeline "Using Selection to Improve Particle Swarm Optimization," Proc. of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, 1998, pp. 84-89.
  20. M.K. Kazimierczuk, and A. Massarini, "Feedforward control of DC-DC PWM boost converter," IEEE Trans. Ind. Electron., vol. 44, no. 2, pp. 143-148, 1997.