DOI QR코드

DOI QR Code

Thermal Decomposition Behavior of LCT Composites Using Boron Nitride Filler

Boron Nitride를 함유한 열경화성 액정 에폭시의 열분해 거동

  • Hwangbo, Sejin (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Cho, Seung Hyun (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 황보세진 (숭실대학교 유기신소재파이버공학과) ;
  • 조승현 (숭실대학교 유기신소재파이버공학과)
  • Received : 2018.01.02
  • Accepted : 2018.02.15
  • Published : 2018.02.28

Abstract

A liquid crystalline thermosetting-epoxy-based composite was fabricated using diglycidyl ether of 4,4'-biphenol, boron nitride as the filler, and sulfanilamide as the curing agent. To investigate the thermal behavior, thermogravimetric analysis was performed, and temperature differences of the sample were recorded when using 1.0-7.0 wt.% boron nitride. The activation energy for thermal decomposition was calculated using the Kissinger method and Flynn-wall method. The results showed that the activation energy was proportional to the amount of added filler.

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Bagheri, M. A. Willams, and R. A. Pearson, "Use of Surface Modified Recycled Rubber Particles for Toughening of Epoxy Polymers", Polym. Eng. Sci., 1997, 37, 245-251. https://doi.org/10.1002/pen.11666
  2. B. Hirn, C. Carfagna, and R. Lanzetta, "Linear Precursors of Liquid Crystalline Thermosets", J. Mater. Chem., 1996, 6, 1473- 1478. https://doi.org/10.1039/jm9960601473
  3. S. K. Bhattacharya and R. R. Tummala, "Integral Passives for Next Generation of Electronic Packaging: Application of Epoxy/ceramic Nanocomposites as Integral Capacitors", Microelectronics J., 2001, 32, 11-19. https://doi.org/10.1016/S0026-2692(00)00104-X
  4. J. Lu, P. Askeland, and L. T. Drzal, "Surface Modification of Microfibrillated Cellulose for Epoxy Composite Applications", Polymer, 2008, 49, 1285-1296. https://doi.org/10.1016/j.polymer.2008.01.028
  5. M. G. Lu, M. J. Shim, and S. W. Kim, "Thermal Degradation of LC Epoxy Thermosets", J. Appl. Polym. Sci., 2000, 75, 1514- 1521. https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1514::AID-APP10>3.0.CO;2-E
  6. F. L. Jin and S. J. Park, "Impact-strength Improvement of Epoxy Resins Reinforced with a Biodegradable Polymer", Mater. Sci. Eng. A, 2008, 478, 402-405. https://doi.org/10.1016/j.msea.2007.05.053
  7. D. Zhang and D. Jia, "Thoughness and Strength Improvement of Diglycidyl Ether of Bisphenol-A by Low Viscosity Liquid Hyperbranched Epoxy Resin", J. Appl. Polym. Sci., 2006, 101, 2504-2511. https://doi.org/10.1002/app.23760
  8. C. Cargagna, V. Ambrogi, G. Malucelli, and M. Giamberini, "Liquid Crystalline Epoxy Resin with Improved Toughness", J. Adhesion Sci. Tech., 2001, 15, 1635-1654. https://doi.org/10.1163/156856101753207724
  9. A. M-Mija, C. N. Cascaval, and P. Navard, "Liquid Crystalline Epoxy Thermosets with Naphthyl Mesogen", Designed Monomers and Polymers, 2005, 8, 487-499. https://doi.org/10.1163/1568555054937944
  10. Y. Li, P. Badrinarayanan, and M. R. Kessler, "Liquid Crystalline Resin Based on Biphenyl Mesogen: Thermal Characterization", Polymer, 2013, 54, 3017-3025. https://doi.org/10.1016/j.polymer.2013.03.043
  11. Y. Li and M. R. Kessler, "Liquid Crystalline Epoxy Resin Based on Biphenyl Emsogen: Effect of Magnetic Field Orientation During Cure", Polymer, 2013, 54, 5741-5746. https://doi.org/10.1016/j.polymer.2013.08.005
  12. T. Giang and J. Kim, "Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy- Alumina Composites", J. Electronic Mat., 2017, 46, 627-636. https://doi.org/10.1007/s11664-016-4704-1
  13. T. Giang and J. Kim, "Effect of Backbone Moiety in Diglycidylether-terminated Liquid Crystalline Epoxt on Thermal Conductivity of Epoxy/alumina Composite", J. Ind. Eng. Chem., 2015, 30, 77-84. https://doi.org/10.1016/j.jiec.2015.05.004
  14. R.-C. Zhang, D. Sun, A. Lu, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. maguire, and D. Mariotti, "Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance", Appl. Mater. Interfaces, 2016, 8, 13567-13572. https://doi.org/10.1021/acsami.6b01531
  15. C. Yu, J. Zhang, Z. Li, W. Tian, L. Wang, L, Luo, Q. Li, X. Fan, and Y. Yao, "Enhancement Through-plane Thermal Conductivity of Boron Nitride/epoxy Composites", Compos. Part A: Appl. Sci and Manuf., 2017, 98, 25-31. https://doi.org/10.1016/j.compositesa.2017.03.012
  16. W. Cheewawuttipong, D. Fuoka, S. Tanoue, H. Uematsu, and Y. Iemoto, "Thermal and Mechanical Properties of Polypropylene/ Boron Nitride Composites", Energy Procedia, 2013, 34, 808-817. https://doi.org/10.1016/j.egypro.2013.06.817
  17. K. Kim, H. Ju, and J. Kim, "Filler Orientation of Boron Nitride Composites via External Electric Field for Thermal Conductivity Enhancement", Ceramics International, 2016, 42, 8657-8663. https://doi.org/10.1016/j.ceramint.2016.02.098
  18. W.-F. A. Su, K. C. Chen, and S. Y. Tseng, "Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy", J. Appl. Polym. Sci., 2000, 78, 446-451. https://doi.org/10.1002/1097-4628(20001010)78:2<446::AID-APP250>3.0.CO;2-W
  19. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Analytical Chem., 1957, 29, 1702-1706. https://doi.org/10.1021/ac60131a045
  20. J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", Polym. Lett., 1966, 4, 323-328. https://doi.org/10.1002/pol.1966.110040504
  21. H. Moon, K. Kim, S. Hwangbo, and S. Cho, "Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler", Text. Sci. Eng., 2015, 52, 206-214. https://doi.org/10.12772/TSE.2015.52.206