DOI QR코드

DOI QR Code

Accumulation of oxyresveratrol in Ramulus mori upon postharvest storage

숙성에 의한 뽕나무 상지 내 옥시레스베라트롤 축적

  • Received : 2017.09.22
  • Accepted : 2017.12.04
  • Published : 2018.02.28

Abstract

Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene), found in many plants including grape, peanut and mulberry, is a phytoalexin, an antimicrobial and antioxidative substance that rapidly accumulates in areas infected by the pathogen. We examined the accumulation of oxyresveratrol in nine Morus alba L. cultivars with respect to storage time and temperature postharvest and infection with GRAS microorganisms. Among the nine cultivars, the Suwon cultivar showed the highest oxyresveratrol content (9.6-fold increase) postharvest, when stored at $30^{\circ}C$ for 7 days. The optimal temperature and postharvest storage time for oxyresveratrol accumulation was $30^{\circ}C$ and 6 days. When Ramulus mori was infected with five microorganisms, the accumulation of oxyresveratrol increased over 4-fold in response to B. coagulans infection. These results suggest that oxyresveratrol accumulation is influenced by storage temperature, storage time, Ramulus mori cultivars, and microbial attack. Therefore, postharvest storage for an appropriate time period at a suitable temperature might be a useful way to industrially produce Ramulus mori cultivars with high oxyresveratrol content.

Keywords

oxyresveratrol;stilbenoid;Morus alba L.;Ramulus mori;postharvest

References

  1. Mongolsuk S, Robertson A, Towers R. 429. 2: 4: 3': 5'-Tetrahydroxystilbene from Artocarpus lakoocha. J. Chem. Soc. 2231-2233 (1957)
  2. Shao B, Guo HZ, Cui YJ, Liu AH, Yu HI, Guo H, Xu M, Guo DA. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography.J. Pharmaceut. Biomed. 44: 737-742 (2007) https://doi.org/10.1016/j.jpba.2007.03.008
  3. Djapic N, Djarmati Z, Filip S, Jankov RJ. A stilbene from the heartwood of Maclura pomifera. J. Serb. Chem. Soc. 68: 235-237 (2003) https://doi.org/10.2298/JSC0303235D
  4. Hanawa F, Tahara S, Mizutani J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31: 3005-3007 (1992) https://doi.org/10.1016/0031-9422(92)83436-3
  5. Kim JK, Kim MJ, Cho SG, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J. Ind. Microbiol. Biot. 37: 631-637 (2010) https://doi.org/10.1007/s10295-010-0722-9
  6. Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO. Invitro and invivo antiinflammatory effect of oxyresveratrol from Morus alba L. J. Pharm. Pharmacol. 55: 1695-1700 (2003) https://doi.org/10.1211/0022357022313
  7. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9: 64-76 (2003) https://doi.org/10.1016/j.niox.2003.09.005
  8. Breuer C, Wolf Gerald, Andrabi SA, Lorenz P, Horn TFW. Blood-brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 393: 113-118 (2006) https://doi.org/10.1016/j.neulet.2005.09.081
  9. Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 65: 213-218 (2014) https://doi.org/10.1016/j.fct.2013.12.040
  10. He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against ${\alpha}$-glucosidase. J. Agr. Food Chem. 61: 8110-8119 (2013) https://doi.org/10.1021/jf4019323
  11. Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmacol. 130: 460-464 (2010) https://doi.org/10.1016/j.jep.2010.05.032
  12. Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TFW. Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 1017: 98-107 (2004) https://doi.org/10.1016/j.brainres.2004.05.038
  13. Lee JY, Kwon GY, Park JE, Kim JK, Lim YH. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp. Biol. M. 241: 1757-1763 (2016) https://doi.org/10.1177/1535370216650054
  14. Hwang DH, Jo SP, Lee JY, Kim JK, Kim KH, Lim YH. Antihyperlipidaemic effects of oxyresveratrol containing Ramulus mori ethanol extract in rats fed a high-cholesterol diet. J. Funct. Food. 19: 353362 (2015)
  15. Park GS, Kim JK. Kim JH. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade. BMB Rep. 49: 232-237 (2016) https://doi.org/10.5483/BMBRep.2016.49.4.002
  16. Hwang DH, Jo HA, Kim JK, Lim YH. Oxyresveratrol-containing Ramulus mori ethanol extract attenuates acute colitis by suppressing inflammation and increasing mucin secretion. J. Funct. Food. 35: 146-158 (2017) https://doi.org/10.1016/j.jff.2017.05.042
  17. Lee JY, Kwon GY, Park JE, Kim JK, Choe SY, Seo YH, Lim YH. An ethanol extract of Ramulus mori improves blood circulation by inhibiting platelet aggregation. Biosci. Biotec. Bioch. 80: 1410-1415 (2016) https://doi.org/10.1080/09168451.2016.1156479
  18. Cantos E, Garcia-Viguera C, de Pascual-Teresa S, Tomas-Barberan FA. Effect of post harvest ultraviolet irradiation on resveratrol and other phenolics of cv. Napoleon table grapes. J. Agr. Food Chem. 48: 4606-4612 (2000) https://doi.org/10.1021/jf0002948
  19. Langcake P, Pryce RJ. A new class of phytoalexins from grapevines. Cell. Mol. Life Sci. 33: 151-152 (1977) https://doi.org/10.1007/BF02124034
  20. Jimenez JB, Orea JM, Urena AG, Escribano P, de la Osa PL, Guadarrama A. Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur. Food Res. Technol. 224: 373-378 (2007)
  21. Houille B, Besseau S, Courdavault V, Oudin A, Glevarec G, Delanoue G, Guerin L, Simkin AJ, Papon N, Clastre M, Giglioli-Guivarc'h N, Lanoue A. Biosynthetic origin of E-resveratrol accumulation in grape canes during postharvest storage. J. Agr. Food Chem. 63: 1631-1638 (2015) https://doi.org/10.1021/jf505316a
  22. Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Daigle K, Bhatnagar D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J. Agr. Food Chem. 61: 8412-8419 (2013) https://doi.org/10.1021/jf4020087
  23. Sales JM, Resurreccion AVA. Maximising resveratrol and piceid contents in UV and ultrasound treated peanuts. Food Chem. 117: 674-680 (2009) https://doi.org/10.1016/j.foodchem.2009.04.075
  24. Bonghi C, Rizzini FM, Gambuti A, Moio L, Chkaiban L, Tonutti P. Chkaiban L. Phenol compound metabolism and gene expression in the skin of wine grape (Vitis vinifera L.) berries subjected to partial postharvest dehydration. Postharvest Biol. Tec. 67: 102-109 (2012) https://doi.org/10.1016/j.postharvbio.2012.01.002
  25. Brinker AM, Seigler DS. Time course of piceatannol accumulation in resistant and susceptible sugarcane stalks after inoculation with Colletotrichum falcatum. Physiol. Mol. Plant P. 42: 169-176 (1993) https://doi.org/10.1006/pmpp.1993.1015

Acknowledgement

Supported by : 농림축산식품부