DOI QR코드

DOI QR Code

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah (Department of Plant Protection, College of Agriculture and Natural Resources, Razi University) ;
  • Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB)
  • Received : 2018.06.30
  • Accepted : 2018.09.12
  • Published : 2018.12.01

Abstract

Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

E1PPBG_2018_v34n6_459_f0001.png 이미지

Fig. 1. Non-invasive diagnosis of microbial pathogenic infection and diseased plant tissues by volatile analysis. Volatile interpretation can be separated into two phases: 1. Volatile collection and 2. Volatile analysis. Analysis techniques include quantification of relative amounts of different volatiles and real-time analysis to assess ongoing changes. Volatile collection tools include dynamic sampling methods such as closed-loop-stripping-analysis (CLSA) and static headspace sampling methods such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE), and silicone tubing (ST). Quantification methods involve conventional gas chromatography-mass spectrometry (GC-MS) and portable GC-MS devices. Real-time analysis tools include Proton Transfer Reaction (PTR)-MS, multi-capillary column (MCC)-PTR-MS and E-nose. Two of these technologies, E-nose and portable GCMS, can be used in the field.

E1PPBG_2018_v34n6_459_f0002.png 이미지

Fig. 2. Preparation of biogenic volatile compound formulations. There are three main steps in the preparation of volatiles for application to crop plants: 1. Emulsification, where an emulsion of volatiles, a polymer such as alginate, gelatin, or starch, and an emulsifier is prepared; 2. Processing, where volatiles are coated with polymers by means of spray drying with heat, coacervation with dissolving compounds such as ethanol, or extrusion with cross-linking compounds such as CaCl2; and 3. Microcapsulation, where microcapsules are separated and dried for field applications.

E1PPBG_2018_v34n6_459_f0003.png 이미지

Fig. 3. Uses of biogenic volatiles in plant health applications. Microcapsule and sol-gel formulations of biogenic volatile compounds can be used in a range of situations: 1. Storage application; 2. Greenhouse application; 3. Insect pest control; 4. Open-field application; and 5. Seed priming.

Acknowledgement

Supported by : Ministry of Agriculture, Food and Rural Affairs, Ministry of Science and ICT

References

  1. Ajwa, H. A., Trout, T., Mueller, J., Wilhelm, S., Nelson, S. D., Soppe, R. and Shatley, D. 2002. Application of alternative fumigants through drip irrigation systems. Phytopathology 92:1349-1355. https://doi.org/10.1094/PHYTO.2002.92.12.1349
  2. Aksenov, A. A., Pasamontes, A., Peirano, D. J., Zhao, W., Dandekar, A. M., Fiehn, O., Ehsani, R. and Davis, C. E. 2014. Detection of Huanglongbing disease using differential mobility spectrometry. Anal. Chem. 86:2481-2488. https://doi.org/10.1021/ac403469y
  3. Arrarte, E., Garmendia, G., Rossini, C., Wisniewski, M. and Vero, S. 2017. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol. Control 109:14-20. https://doi.org/10.1016/j.biocontrol.2017.03.002
  4. Asari, S., Matzen, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol., 92:fiw070. https://doi.org/10.1093/femsec/fiw070
  5. Attaran, E., Zeier, T. E., Griebel, T. and Zeier, J. 2009. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954-971. https://doi.org/10.1105/tpc.108.063164
  6. Bailly, A. and Weisskopf, L. 2012. The modulating effect of bacterial volatiles on plant growth: Current knowledge and future challenges. Plant Signal. Behav. 7:79-85. https://doi.org/10.4161/psb.7.1.18418
  7. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A. and Liang, L. 2016. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 15:143-182. https://doi.org/10.1111/1541-4337.12179
  8. Bansode, S. S., Banarjee, S. K., Gaikwad, D. D., Jadhav, S. L. and Thorat, R. M. 2010. Microencapsulation: a review. Int. J. Pharm. Sci. Rev. Res. 1:38-43.
  9. Beck, J. J., Porter, N., Cook, D. Gee, W. S., Griffith, C. M., Rands, A. D., Truong, T. V., Smith, L. and San Roman, I. 2015. In-field volatile analysis employing a hand-held portable GC-MS: Emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem. Anal. 26:395-403. https://doi.org/10.1002/pca.2573
  10. Bian, L., Sun, X. L., Cai, X. M. and Chen, Z. M. 2014. Slow release of plant volatiles using sol-gel dispensers. J. Econ. Entomol. 107:2023-2029. https://doi.org/10.1603/EC14054
  11. Bian, L., Cai, X. M., Luo, Z. X., Li, Z. Q., Xin, Z. J. and Chen, Z. M. 2018. Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves. J. Econ. Entomol. 111:629-636. https://doi.org/10.1093/jee/tox370
  12. Biasioli, F., Yeretzian, C., Mark, T. D., Dewulf, J. and Van Langenhove, H. 2011. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends Anal. Chem. 30:1003-1017. https://doi.org/10.1016/j.trac.2011.04.005
  13. Biondi, E., Blasioli, S., Galeone, A., Spinelli, F., Cellini, A., Lucchese, C. and Braschi, I. 2014. Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta 129:422-430. https://doi.org/10.1016/j.talanta.2014.04.057
  14. Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., Eberl, L. and Weisskopf, L. 2011. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 13:3047-3058. https://doi.org/10.1111/j.1462-2920.2011.02582.x
  15. Boukaew, S., Plubrukam, A. and Prasertsan, P. 2013. Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl 58:471-482. https://doi.org/10.1007/s10526-013-9510-6
  16. Buckley, A. M. and Greenblatt, M. 1994. The sol-gel preparation of silica gels. J. Chem. Educ. 71:599-603. https://doi.org/10.1021/ed071p599
  17. Cai, X., Bian, L., Xu, X., Luo, Z., Li, Z. and Chen, Z. 2017. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci. Rep. 7:41818. https://doi.org/10.1038/srep41818
  18. Castulo-Rubio, D. Y., Alejandre-Ramirez, N. A., del Carmen Orozco-Mosqueda, M., Santoyo, G., Macias-Rodriguez, L. I. and Valencia-Cantero, E. 2015. Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription In Vitro. J. Plant Growth Regul. 34:611-623. https://doi.org/10.1007/s00344-015-9495-8
  19. Cellini, A., Biondi, E., Blasioli, S., Rocchi, L., Farneti, B., Braschi, I., Savioli, S., Rodriguez-Estrada, M., Biasioli, F. and Spinelli, F. 2016. Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann. Appl. Biol. 168:409-420. https://doi.org/10.1111/aab.12272
  20. Chan, A. S., del Valle, J., Lao, K., Malapit, C., Chua, M. and So, R. C. 2009. Evaluation of silica Sol-Gel microcapsule for the controlled release of insect repellent, N,N-Diethyl-2-methoxybenzamide, on Cotton. Philipp. J. Sci. 138:13-21.
  21. Cheng, X., Cordovez, V., Etalo, D. W., van der Voort, M. and Raaijmakers, J. M. 2016. Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Front. Plant Sci. 7:1706.
  22. Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40:882-892. https://doi.org/10.1007/s10886-014-0488-z
  23. Chung, J. H., Song, G. C. and Ryu, C. M. 2016. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90:677-687. https://doi.org/10.1007/s11103-015-0344-8
  24. Contreras, J. A., Murray, J. A., Tolley, S. E., Oliphant, J. L., Tolley, H. D., Lammert, S. A., Lee, E. D., Later, D. W. and Lee, M. L. 2008. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass Spectrom. 19:1425-1434. https://doi.org/10.1016/j.jasms.2008.06.022
  25. de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H. E., Ratcliffe, N. M. and Spencer-Phillips, P. T. N. 2000. The development of a sensor system for the early detection of soft rot in stored potato tubers. Meas. Sci. Technol. 11:1685. https://doi.org/10.1088/0957-0233/11/12/305
  26. Deasy, W., Shepherd, T., Alexander, C. J., Birch, A. N. and Evans, K. A. 2016. Development and validation of a SPME-GC-MS Method for In situ passive sampling of root volatiles from glasshouse-grown broccoli plants undergoing below-ground herbivory by larvae of cabbage root fly, Delia radicum L. Phytochem. Anal. 27:375-393. https://doi.org/10.1002/pca.2637
  27. Dettmer, K. and Engewald, W. 2002. Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal. Bioanal. Chem. 373:490-500. https://doi.org/10.1007/s00216-002-1352-5
  28. Effmert, U., Kalderas, J., Warnke, R. and Piechulla, B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38:665-703. https://doi.org/10.1007/s10886-012-0135-5
  29. Eilers, E. J., Pauls, G., Rillig, M. C., Hansson, B. S., Hilker, M. and Reinecke, A. 2015. Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots. J. Chem. Ecol. 41:253-266. https://doi.org/10.1007/s10886-015-0559-9
  30. Gallego, E., Roca, F. J., Perales, J. F. and Guardino, X. 2010. Comparative study of the adsorption performance of a multisorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta 81:916-924. https://doi.org/10.1016/j.talanta.2010.01.037
  31. Giacomuzzi, V., Cappellin, L., Khomenko, I., Biasioli, F., Schutz, S., Tasin, M., Knight, A. L. and Angeli, S. 2016. Emission of volatile compounds from apple plants infested with Pandemis heparana larvae, antennal response of conspecific adults, and preliminary field trial. J. Chem. Ecol. 42:1265-1280. https://doi.org/10.1007/s10886-016-0794-8
  32. Giacomuzzi, V., Cappellin, L. Nones, S., Khomenko, I., Biasioli, F., Knight, A. L. and Angeli, S. 2017. Diel rhythms in the volatile emission of apple and grape foliage. Phytochemistry 138:104-115. https://doi.org/10.1016/j.phytochem.2017.03.001
  33. Halbfeld, C., Baumbach, J. I., Blank, L. M. and Ebert, B. E. 2018. Multi-capillary Column Ion Mobility Spectrometry of Volatile Metabolites for Phenotyping of Microorganisms. In: Synthetic Metabolic Pathways: Methods and Protocols, eds. by M. K. Jensen and J. D. Keasling, pp. 229-258. Springer New York, NY, USA.
  34. Heil, M. 2014. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol. 204:297-306. https://doi.org/10.1111/nph.12977
  35. Heuskin, S., Lorge, S., Lognay, G., Wathelet, J.-P., Bera, F., Leroy, P., Haubruge, E. and Brostaux, Y. 2012. A semiochemical slow-release formulation in a biological control approach to attract hoverflies. J. Environ. Ecol. 3:72-85.
  36. Huang, R., Li, G. Q., Zhang, J., Yang, L. Che, H. J., Jiang, D. H. and Huang, H. C. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101:859-869. https://doi.org/10.1094/PHYTO-09-10-0255
  37. Il'Ichev, A. L., Stelinski, L. L., Williams, D. G. and Gut, L. J. 2006. Sprayable microencapsulated sex pheromone formulation for mating disruption of oriental fruit moth (Lepidoptera: Tortricidae) in Australian peach and pear orchards. J. Econ. Entomol. 99:2048-2054. https://doi.org/10.1093/jee/99.6.2048
  38. Jansen, R. M., Wildt, J., Kappers, I. F., Bouwmeester, H. J., Hofstee, J. W. and van Henten, E. J. 2011. Detection of diseased plants by analysis of volatile organic compound emission. Annu. Rev. Phytopathol. 49:157-174. https://doi.org/10.1146/annurev-phyto-072910-095227
  39. Jiang, Y., Ye, J., Veromann, L. L. and Niinemets, U. 2016. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. Tree Physiol. 36:856-872. https://doi.org/10.1093/treephys/tpw035
  40. Jisha, K., Vijayakumari, K. and Puthur, J. T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35:1381-1396. https://doi.org/10.1007/s11738-012-1186-5
  41. Kallenbach, M., Oh, Y., Eilers, E. J., Veit, D., Baldwin, I. T. and Schuman, M. C. 2014. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 78:1060-1072. https://doi.org/10.1111/tpj.12523
  42. Kallenbach, M., Veit, D., Eilers, E. J. and Schuman, M. C. 2015. Application of silicone tubing for robust, simple, highthroughput, and time-resolved analysis of plant volatiles in field experiments. Bio-protocol 5:e1391.
  43. Kaplan, I. 2017. A cry for help or sexual perfumes? An alternative hypothesis for wasp attraction to the scent of caterpillarwounded plants. Plant Cell Environ. 40:327-329. https://doi.org/10.1111/pce.12864
  44. Kfoury, N., Scott, E., Orians, C. and Robbat, A. Jr. 2017. Direct contact sorptive extraction: a robust method for sampling plant volatiles in the field. J. Agric. Food Chem. 65:8501-8509. https://doi.org/10.1021/acs.jafc.7b02847
  45. Laothawornkitkul, J., Moore, J. P., Taylor, J. E., Possell, M., Gibson, T. D., Hewitt, C. N. and Paul, N. D. 2008. Discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease monitoring. Environ. Sci. Technol. 42:8433-8439. https://doi.org/10.1021/es801738s
  46. Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., Richter, P., Tamayo, J. and Donoso, R. 2016. Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front. Microbiol. 7:1838.
  47. Lei, Y., Popplewell, L. M. and Huang, X. 2015. Microcapsules containing active ingredients. Google Patents: pp: US20150164751A20150164751.
  48. Lin, Y., Hussain, M., Avery, P. B., Qasim, M., Fang, D. and Wang, L. 2016. Volatiles from plants induced by multiple aphid attacks promote conidial performance of Lecanicillium lecanii. PLoS One 11:e0151844. https://doi.org/10.1371/journal.pone.0151844
  49. Lough, F., Perry, J. D., Stanforth, S. P. and Dean, J. R. 2017. Detection of exogenous VOCs as a novel in vitro diagnostic technique for the detection of pathogenic bacteria. Trends Anal. Chem. 87:71-81. https://doi.org/10.1016/j.trac.2016.12.004
  50. Macias-Rubalcava, M. L., Sanchez-Fernandez, R. E., Roque-Flores, G., Lappe-Oliveras, P. and Medina-Romero, Y. M. 2018. Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiol. 76:363-373. https://doi.org/10.1016/j.fm.2018.06.014
  51. Martel, J. W., Alford, A. R. and Dickens, J. 2007. Evaluation of a novel host plant volatile-based attracticide for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Crop Protect. 26:822-827. https://doi.org/10.1016/j.cropro.2006.08.002
  52. Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E. and Dandekar, A. M. 2015. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35:1-25. https://doi.org/10.1007/s13593-014-0246-1
  53. Materic, D., Bruhn, D., Turner, C., Morgan, G., Mason, N. and Gauci, V. 2015. Methods in plant foliar volatile organic compounds research. Appl. Plant Sci. 3:1500044. https://doi.org/10.3732/apps.1500044
  54. Minnich, M. 1993. Behavior and determination of volatile organic compounds in soil: A literature review. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-93/140 (NTIS PB94100153). URL https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=ORD&dirEntryID=45050.
  55. Mithofer, A. and Boland, W. 2016. Do you speak chemistry? Small chemical compounds represent the evolutionary oldest form of communication between organisms. EMBO Rep. 17:626-629. https://doi.org/10.15252/embr.201642301
  56. Moalemiyan, M., Vikram, A., Kushalappa, A. and Yaylayan, V. 2006. Volatile metabolite profiling to detect and discriminate stem-end rot and anthracnose diseases of mango fruits. Plant Pathol. 55:792-802. https://doi.org/10.1111/j.1365-3059.2006.01443.x
  57. Niinemets, U., Kannaste, A. and Copolovici, L. 2013. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. 4:262.
  58. Niinemets, U. and Monson, R. K. 2013. Biology, controls and models of tree volatile organic compound emissions. 5th ed. Springer Netherlands. 547 pp.
  59. Ossowicki, A., Jafra, S. and Garbeva, P. 2017. The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 12:e0174362. https://doi.org/10.1371/journal.pone.0174362
  60. Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M. and Park, K. 2015. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem. Biophys. Res. Commun. 461:361-365. https://doi.org/10.1016/j.bbrc.2015.04.039
  61. Piechulla, B. and Schnitzler, J. P. 2016. Circumvent $CO_2$ effects in volatile-based microbe-plant interactions. Trends Plant Sci. 21:541-543. https://doi.org/10.1016/j.tplants.2016.05.001
  62. Piechulla, B., Lemfack, M. C. and Kai, M. 2017. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ. 40:2042-2067. https://doi.org/10.1111/pce.13011
  63. Portillo-Estrada, M., Kazantsev, T., Talts, E., Tosens, T. and Niinemets, U. 2015. Emission timetable and quantitative patterns of wound-induced volatiles across different leaf damage treatments in Aspen (Populus Tremula). J. Chem. Ecol. 41:1105-1117. https://doi.org/10.1007/s10886-015-0646-y
  64. Quintana-Rodriguez, E., Morales-Vargas, A. T., Molina-Torres, J., Adame-Alvarez, R. M., Acosta-Gallegos, J. A. and Heil, M. 2015. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol. 103:250-260. https://doi.org/10.1111/1365-2745.12340
  65. Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insectdamaged maize roots. Nature 434:732-737. https://doi.org/10.1038/nature03451
  66. Rosenberg, M., Kopelman, I. J. and Talmon, Y. 1990. Factors affecting retention in spray-drying microencapsulation of volatile materials. J. Agric. Food Chem. 38:1288-1294. https://doi.org/10.1021/jf00095a030
  67. Ruzsanyi, V., Fischer, L., Herbig, J., Ager, C. and Amann, A. 2013. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry. J. Chromatogr. A 1316:112-118. https://doi.org/10.1016/j.chroma.2013.09.072
  68. Ryu, C. M. 2015. Bacterial Volatiles as Airborne Signals for Plants and Bacteria. In: Principles of Plant-Microbe Interactions, ed. by B. Lugtenberg, pp. 53-61. Springer, Switzerland.
  69. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
  70. Sharifi, R. and Ryu, C. M. 2016. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front. Microbiol. 7:196.
  71. Sharifi, R. and Ryu, C. M. 2018a. Revisiting bacterial volatilemediated plant growth promotion: Lessons from the past and objectives for the future. Ann. Bot. 122:349-358. https://doi.org/10.1093/aob/mcy108
  72. Sharifi, R. and Ryu, C. M. 2018b. Sniffing bacterial volatile compounds for healthier plants. Curr. Opin. Plant Biol. 44:88-97. https://doi.org/10.1016/j.pbi.2018.03.004
  73. Sharifi, R., Lee, S. M. and Ryu, C. M. 2018. Microbe-induced plant volatiles. New Phytol. 220:684-691. https://doi.org/10.1111/nph.14955
  74. Shiojiri, K., Ozawa, R., Matsui, K., Sabelis, M. W. and Takabayashi, J. 2012. Intermittent exposure to traces of green leaf volatiles triggers a plant response. Sci. Rep. 2:378. https://doi.org/10.1038/srep00378
  75. Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14:9803-9819. https://doi.org/10.3390/ijms14059803
  76. Song, G. C., Choi, H. K. and Ryu, C. M. 2015. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis. Front. Plant Sci. 6:821.
  77. Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M. and Linko, P. 2003. Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. J. Food Sci. 68:2256-2262. https://doi.org/10.1111/j.1365-2621.2003.tb05756.x
  78. Spinelli, F., Cellini, A., Vanneste, J. L., Rodriguez-Estrada, M. T., Costa, G., Savioli, S., Harren, F. J. M. and Cristescu, S. M. 2012. Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees 26:141-152. https://doi.org/10.1007/s00468-011-0667-2
  79. Stenberg, J. A., Heil, M., Ahman, I. and Bjorkman, C. 2015. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 20:698-712. https://doi.org/10.1016/j.tplants.2015.08.007
  80. Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V. and Gao, X. 2017. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 8:171.
  81. Tholl, D., Boland, W., Hansel, A., Loreto, F., Rose, U. S. and Schnitzler, J. P. 2006. Practical approaches to plant volatile analysis. Plant J. 45:540-560. https://doi.org/10.1111/j.1365-313X.2005.02612.x
  82. Turlings, T. T. C. and Erb, M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433-452. https://doi.org/10.1146/annurev-ento-020117-043507
  83. Velazquez-Becerra, C., Macias-Rodriguez, L. I., Lopez-Bucio, J., Altamirano-Hernandez, J., Flores-Cortez, I. and Valencia-Cantero, E. 2011. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329-340. https://doi.org/10.1007/s11104-010-0583-z
  84. Wan, M., Li, G., Zhang, J., Jiang, D. and Huang, H. C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control 46:552-559. https://doi.org/10.1016/j.biocontrol.2008.05.015
  85. Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81:357-364. https://doi.org/10.1023/A:1020592802234
  86. Wilson, A. D., Lester, D. G. and Oberle, C. S. 2004. Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes. Phytopathology 94:419-431. https://doi.org/10.1094/PHYTO.2004.94.5.419
  87. Wittgenstein, L. 1922. Logisch-Philosophische Abhandlung. Kegan Paul.
  88. Xiao, Z., Liu, W., Zhu, G., Zhou, R. and Niu, Y. 2014. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J. Sci. Food Agric. 94:1482-1494. https://doi.org/10.1002/jsfa.6491
  89. Xie, X., Zhang, H. and Pare, P. W. 2009. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal. Behav. 4:948-953. https://doi.org/10.4161/psb.4.10.9709
  90. Yazdani, M. and Baker, G. 2017. A plant volatile-based attractant formulation is not attractive to Diadegma semiclausum (Hymenoptera: Ichneumonidae). Aust. Entomol. 57:359-364.
  91. Yi, H. S., Heil, M., Adame-Alvarez, R. M., Ballhorn, D. J. and Ryu, C. M. 2009. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 151:2152-2161. https://doi.org/10.1104/pp.109.144782
  92. Yu, S. M. and Lee, Y. H. 2013. Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485-495. https://doi.org/10.1007/s11104-013-1652-x
  93. Yu, Y. T., Liu, L. N., Zhu, X. L. and Kong, X. Z. 2012. Microencapsulation of dodecyl acetate by complex coacervation of whey protein with acacia gum and its release behavior. Chin. Chem. Lett. 23:847-850. https://doi.org/10.1016/j.cclet.2012.05.006
  94. Zada, A., Falach, L. and Byers, J. A. 2009. Development of solgel formulations for slow release of pheromones. Chemoecology 19:37-45. https://doi.org/10.1007/s00049-009-0007-9
  95. Zhu, H., Wang, X., Reding, M. E. and Locke, J. C. 2011. Distribution of chemical and microbial pesticides delivered through drip irrigation systems. In: Pesticides - Formulations, Effects, Fate, ed. by M. Stoytcheva, pp. 155-180. InTech, Croatia.