Effect of Biostimulator Chlorella fusca on Improving Growth and Qualities of Chinese Chives and Spinach in Organic Farm

  • Kim, Min-Jeong (Organic Agricultural Division, National Institute of Agriculture Sciences) ;
  • Shim, Chang-Ki (Organic Agricultural Division, National Institute of Agriculture Sciences) ;
  • Kim, Yong-Ki (Organic Agricultural Division, National Institute of Agriculture Sciences) ;
  • Ko, Byong-Gu (Organic Agricultural Division, National Institute of Agriculture Sciences) ;
  • Park, Jong-Ho (Organic Agricultural Division, National Institute of Agriculture Sciences) ;
  • Hwang, Soo-Gen (Rural Policy Division, Hongcheon Agricultural Technology Center) ;
  • Kim, Baeg-Ho (Rural Service Division, Samcheok Agricultural Technology Center)
  • Received : 2018.11.11
  • Accepted : 2018.11.19
  • Published : 2018.12.01


This study was conducted to investigate the efficacy of freshwater alga, Chlorella fusca on the improvement of growth and qualities in organic spinach and Chinese chives farm. The average height of Chinese chives treated with the chlorella was 3.7 cm smaller than that of the untreated. The leaf width and fresh weight of Chinese chives treated with the chlorella was 0.5 mm wider and 30.3 g heavier than that of the untreated. The commercialization and yield of Chinese chives treated with the chlorella was 11.9% and 18.3%, respectively higher than that of the untreated. Also, the disease severity of gray mold disease of Chinese chives treated with the chlorella was reduced by more than 24.2% when compared with the untreated. The thickness and number of spinach leaves treated with chlorella was 27.9% and 41.8%, respectively higher than that of the untreated. The fresh weight and yield of the spinach treated with the chlorella was 63.6% and 31.5%, respectively higher than that of the untreated. Moreover, the mineral content of K, Ca, Mg, P, Fe, and Mn were recorded higher in the spinach treated with chlorella compared with that of untreated. The results indicated that the freshwater alga, Chlorella fusca is efficient and economical biostimulant in improving plant growth and quality of Chinese chives and spinach in organic farm.

E1PPBG_2018_v34n6_567_f0001.png 이미지

Fig. 1. Control effect (A) and symptoms of gray mold disease caused by Botrytis squamosa on Chlorella fusca treated (B) and untreated (C) Chinese chives leaves after treated with 0.4% C. fusca at two weeks intervals in winter season organic farms in Hongcheon. *Correlation is significant at P < 0.05, **Correlation is significant at P < 0.01.

E1PPBG_2018_v34n6_567_f0002.png 이미지

Fig. 2. Comparison of growth, weight and leaves number of 0.4% Chlorella fusca (A, C, E) and conventional (B, D, F) treated summer season spinach in 2017.

Table 4. Effect of green algae, 0.4% Chlorella fusca (CF) on the mineral content of spinach leaves in organic farm

E1PPBG_2018_v34n6_567_f0003.png 이미지

Table 1. Improving of growth and marketble value of the winter season organic Chinese chives treated with 0.4% Chlorella fusca (CF) in Hongcheon in 2017

E1PPBG_2018_v34n6_567_t0001.png 이미지

Table 2. Effect of green algae, 0.4% Chlorella fusca (CF) on improving of yield of the winter season Chinese chives in five organic farms at Hongcheon

E1PPBG_2018_v34n6_567_t0002.png 이미지

Table 3. Improving of plant growth and yield of summer season organic spinach treated with 0.4% Chlorella fusca (CF) in Samcheok

E1PPBG_2018_v34n6_567_t0003.png 이미지


Supported by : Rural Development Administration


  1. A.O.A.C. 1990. AOAC: Official methods of analysis. 15th ed. AOAC Inc., Arlington, VA, USA. 771 pp.
  2. Abd Elhafiz, A., Abd Elhafiz, A., Gaur, S. S., Hamdany, N., Osman, M. and Lakshmi, T. V. R. 2015. Recent Res. Sci. Technol. 7:14-21.
  3. Abd El Moniem, E. A. and Abd-Allah, A. S. E. 2008. Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevines. Am. Eurasian J. Agric. Environ. Sci. 4:427-433.
  4. Abdel-Hafeez, A. A. 2005. Effect of pre-harvest spraying with seaweed extract "Acadian" and active dry yeast on "Le Conte" pear (Pyrus leconte, Rehd) fruit quality and cold storability. 43:1915-1935.
  5. Agwa, O. K., Ogugbue, C. J. and Williams, E. E. 2017. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int. J. Agric. Res. 12:181-189.
  6. Amro, S. M. S. 2015. Effect of algae extract and zinc sulfate foliar spray on production and fruit quality of orange tree cv. Valencia. IOSR J. Agric. Vet. Sci. 8:51-62.
  7. Anitha, L., Bramari, G. S. and Kalpana, P. 2016. Effect of supplementation of Spirulina platensis to enhance the zinc status in plants of Amaranthus gangeticus, Phaseolus aureus and tomato. Adv. Biosci. Biotechnol. 7:289-299.
  8. Bileva, T. 2013. Influence of green algae Chlorella vulgaris on infested Xiphinema index grape seedlings. J. Earth Sci. Clim. Change 4:136-138.
  9. Cassan, L., Jeannin, I., Lamaze, T. and Morot-Gaudry, J. F. 1992. The effect of the Ascophyllum nodosum extract Goemar GBA 14 on the growth of spinach. Bot. Mar. 35:437-439.
  10. Craigie, J. S. 2011. Seaweed extracts stimuli in plant science and agriculture. J. Appl. Phycol. 23:371-393.
  11. de Mule, M. C. Z., de Caire, G. Z., de Cano, M. S., Palma, R. M. and Colombo, K. 1999. Effect of cyanobacterial inoculation and fertilizers on rice seedlings and postharvest soil structure. Comm. Soil Sci. Plant Anal. 30:97-107.
  12. Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S. and Sampathkumar, P. 2017. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valorization 8:1-10.
  13. Dubey, A. and Dubey, D. K. 2010. Evaluation of cost effective organic fertilizer. Organic eprints. URL [20 November, 2018]
  14. El-din, S. M. and Hassan, S. M. 2016. The promotive effect of different concentrations of marine algae on spinach plants (Spinacia oleracea L.). Egypt J. Hort. 43:109-122.
  15. El-Sharony, T. F., El-Gioushy, S. F. and Amin, O. A. 2015. Effect of foliar application with algae and plant extracts on growth, yield and fruit quality of fruitful mango trees cv. Fagri Kalan. J. Horticulture 2:162.
  16. Faheed, F. A. and Abd El Fattah, Z. 2008. Effect of Chlorella vulgaris as biofertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agric. Soc. Sci. 4:165-169.
  17. Fan, D., Hodges, D. M., Critchley, A. T. and Prithiviraj, B. 2013. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 44:1873-1884.
  18. Fornes, F., Sanchez-Perales, M. S and Guardiola, J. L. 2002. Effect of a seaweed extract on the productivity of 'de Nules' clementine mandarin and Navelina orange. Bot. Mar. 45:486-489.
  19. Garcia-Gonzalez, J. and Sommerfeld, M. 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 28:1051-1061.
  20. Hacisalihoglu, G., Hart, J. J., Wang, Y. H., Cakmak, I. and Kochian, L. V. 2003. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol. 131:595-602.
  21. Hwang, C. W., Shin, H. K., Do, M. S., Kim, Y. J., Park, J. H., Choi, Y. S. and Joo, W. H. 2001. The various biofunctional effects (anticarcinogenic, antioxidative and lypolytic activity) of Pohang buchu. Korean J. Food Sci. Technol. 33:279-281 (in Korean).
  22. Kalpana, P., Sai Bramari, G. and Anitha, L. 2014. Biofortification of Amaranthus gangeticus using Spirulina platensis as microbial inoculant to enhance iron levels. Int. J. Res. Appl. Nat. Soc. Sci. 2:103-110.
  23. Kang, M. S., Sim, S. J. and Chae, H. J. 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19:1-11.
  24. Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J. and Prithiviraj, B. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28:386-399.
  25. Kim, C. H., Lee, M. A., Kim, T. W., Jang, J. Y. and Kim, H. J. 2012. Antiinflammatory effect of Allium hookeri root methanol extract in LPS-induced RAW264.7 cells. J. Korean Soc. Food Sci. Nutr. 41:1645-1648.
  26. Kim, J. H. 2016. Characteristics of functional components in Leek (Allium tuberosum) treated with a sulfur-containing ecofriendly agro-material. The Master's degree thesis. University of Suwon, Suwon, Korea.
  27. Kim, M. J., Shim, C. K., Kim, Y. K., Park, J. H., Hong, S. J., Ji, H. J., Han, E. J. and Yoon, J. C. 2014. Effect of Chlorella vulgaris CHK0008 fertilization on enhancement of storage and freshness in organic strawberry and leaf vegetables. Korean J. Hortic. Sci. and Technol. 32:872-878 (in Korean).
  28. Kim, M. K., Hwang, S. N., Seo, W. D., Kim, K. J., Choi, E. H., Park, I. H., Kim, H. W., Jung, S. G. and Hahm, Y. S. 2009. Physicochemical properties and antioxidant activities of Ulsan Leek (Allium tuberosum Rottler). Rep. Ulsan Inst. Health Environ. 5:71-99 (in Korean).
  29. Kim, M. K., Kim, W. I., Jung, G. B. and Yun, S. G. 2001. Safety assessment of heavy metals in agricultural products in Korea. Korean J. Environ. Agric. 20:169-174 (in Korean).
  30. Kim, S. J. and Park, K. H. 1995. Retardation of Kimchi fermentation by the extracts of Allium tuberosum and growth inhibition of related microorganism. Korean J. Food Sci. Technol. 27:813-818 (in Korean).
  31. Lee, G. Y. 1996. Chinese chives- Gray mold damage is large in community. Agrochemical News Magazine 17:38-43.
  32. Martinez Lozano, S., Verde-Star, M. J., Maiti, R., Oranday, A., Gaona, H., Aranda, E. and Rojas, M. 1999. Effect of an algal extract and several plant growth regulators on the nutritive value of potatoes (Solanum tuberosum L. var. Giant). Arch. Latinoam. Nutr. 49:166-170.
  33. Moon, G. S., Ryu, B. M. and Lee, M. J. 2003. Components and antioxidative activities of Buchu (Chinese chives) harvested at different times. Korean J. Food Sci. Technol. 35:493-498.
  34. Norrie, J. and Hiltz, D. A. 1999. Seaweed extract research and applications in agriculture. Agro Food Ind. Hi-tech 10:15-18.
  35. Ordog, V., Stirk, W. A., Lenobel, R., Bancirova, M., Strnad, M., van Staden, J., Szigeti, J. and Nemeth, L. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J. Appl. Physicol. 16:309-401.
  36. Ozdemir, S., Sukatar, A. and Oztekin, G. B. 2016. Production of Chlorella vulgaris and its effect on plant growth, yield and fruit quality of organic tomato grown in greenhouse as biofertilizer. Tarim Bilim. Derg. 22:596-605.
  37. Park, E. R., Jo, J. O., Kim, S. M., Lee, M. Y. and Kim, K. S. 1998. Volatile flavor component of leek (Allium tuberosum Rotter). J. Korean Soc. Food Sci. Nutr. 27:563-567 (in Korean).
  38. Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., Babu, S., Singh, R., Shivay, Y. S. and Nain, L. 2016. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ. Sci. Pollut. Res. Int. 23:6608-6620.
  39. Shaaban, M. M. 2001. Green microalgae water extracts as foliar feeding to wheat plants. Pakistan J. Biol. Sci. 4:628-632.
  40. Stirk, W. A., Novak, O., Strnad, M. and van Staden, J. 2003. Cytokinins in macroalgae. Plant Growth Regul. 41:13-24.
  41. Yoo, S. O. and Bae, J. H. 1993. Investigation of Korean native Chinese chives on flower bud differentiation. Hortic. Environ. Biotechnol. 34:395-401 (in Korean).