DOI QR코드

DOI QR Code

FOURIER SERIES OF HIGHER-ORDER EULER FUNCTIONS AND THEIR APPLICATIONS

  • Kim, Dae San (Department of Mathematics Sogang University) ;
  • Kim, Taekyun (Department of Mathematics Kwangwoon University)
  • Received : 2016.10.26
  • Accepted : 2017.02.13
  • Published : 2018.01.31

Abstract

In this paper, we give some identities for the higher-order Euler functions arising from the Fourier series of them. In addition, we investigate some formulae related to Bernoulli functions which are derived from our identities.

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
  2. E. M. Beesley, An integral representation for the Euler numbers, Amer. Math. Monthly 76 (1969), 389-391. https://doi.org/10.2307/2316431
  3. L. Carlitz, Some formulas for the Bernoulli and Euler polynomials, Math. Nachr. 25 (1963), 223-231. https://doi.org/10.1002/mana.19630250402
  4. L. Carlitz, The multiplication formulas for the Bernoulli and Euler polynomials, Math. Mag. 27 (1953), 59-64. https://doi.org/10.2307/3029762
  5. J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. 2 (1970), 722-726. https://doi.org/10.1112/jlms/2.Part_4.722
  6. D. S. Kim and T. Kim, Generalized Boole numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM. 110 (2016), no. 2, 823-839.
  7. D. S. Kim, T. Kim, H.-I. Kwon, and T. Mansour, Nonlinear differential equation for Korobov numbers, Adv. Stud. Contemp. Math. (Kyungshang) 26 (2016), no. 4, 733-740.
  8. D. S. Kim, T. Kim, H.-I. Kwon, and T. Mansour, Barnes-type Boole polynomials, Contrib. Discrete Math. 11 (2016), no. 1, 7-15.
  9. T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 131-136.
  10. T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Apol. Anal. 2008 (2008), Art. ID 581582, 11 pp.
  11. T. Kim, Some identities for the Bernoulli the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 1, 23-28.
  12. T. Kim, J. Choi, and Y. H. Kim, A note on the values of Euler zeta functions at positive integers, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 1, 27-34.
  13. T. Kim and D. S. Kim, On $\lambda$-Bell Polynomials associated with umbral calculus, Russ. J. Math. Phys. 24 (2017), no. 1, 1-10. https://doi.org/10.1134/S1061920817010010
  14. T. Kim and D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), no. 1, 88-92. https://doi.org/10.1134/S1061920816010064
  15. T. Kim and D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2086-2098. https://doi.org/10.22436/jnsa.009.05.14
  16. H. I. Kwon, T. Kim, and J. J. Seo, Some new identities of symmetry for modified degenerate Euler polynomials, Proc. Jangjeon Math. Soc. 19 (2016), no. 2, 237-242.
  17. D. H. Lehmer, A new approach to Bernoulli polynomials, Amer. Math. Monthly. 95 (1988), no. 10, 905-911. https://doi.org/10.1080/00029890.1988.11972114
  18. F. R. Olson, Some determinants involving Bernoulli and Euler numbers of higher order, Pacific J. Math. 5 (1955), 259-268. https://doi.org/10.2140/pjm.1955.5.259
  19. L. C. Washington, Introduction to Cyclotomic Fields, Second edition. Graduate Text in Mathematics 83, Springer-Verlag. New York, 1997.
  20. A. Sharma, q-Bernoulli and Euler numbers of higher order, Duke Math. J. 25 (1958), 343-353. https://doi.org/10.1215/S0012-7094-58-02531-6