• Aldea, Nicoleta (Department of Mathematics and Computer Sciences Transilvania University of Brasov) ;
  • Munteanu, Gheorghe (Department of Mathematics and Computer Sciences Transilvania University of Brasov)
  • Received : 2016.12.17
  • Accepted : 2017.06.14
  • Published : 2018.01.31


In this paper, considering the class of complex Kropina metrics we obtain the necessary and sufficient conditions that these are generalized Berwald and complex Douglas metrics, respectively. Special attention is devoted to a class of complex Douglas-Kropina spaces, in complex dimension 2. Also, some examples of complex Douglas-Kropina metrics are pointed out. Finally, the complex Douglas-Kropina metrics are characterized through the theory of projectively related complex Finsler metrics.


  1. M. Abate and G. Patrizio, Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, 1994.
  2. T. Aikou, Projective atness of complex Finsler metrics, Publ. Math. Debrecen 63 (2003), no. 3, 343-362.
  3. N. Aldea, Complex Finsler spaces with Kropina metric, Bull. Transilv. Univ. Brasov Ser. B (N.S.) 14(49) (2007), suppl., 1-10.
  4. N. Aldea and G. Munteanu, On projective invariants of the complex Finsler spaces, Differential Geom. Appl. 30 (2012), no. 6, 562-575.
  5. N. Aldea and G. Munteanu, Projectively related complex Finsler metrics, Nonlinear Analy. RealWorld Appl. 13 (2012), no. 5, 2178-2187.
  6. N. Aldea and G. Munteanu, On complex Landsberg and Berwald spaces, J. Geom. Phys. 62 (2012), no. 2, 368-380.
  7. N. Aldea and G. Munteanu, On complex Douglas spaces, J. Geom. Phys. 66 (2013), 80-93.
  8. S. Bacso and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of Berwald space, Publ. Math. Debrecen 51 (1997), no. 3-4, 385-406.
  9. S. Bacso and M. Matsumoto, On Finsler spaces of Douglas type. II. Projectively flat spaces, Publ. Math. Debrecen 53 (1998), no. 3-4, 423-438.
  10. S. Bacso and I. Papp, A note on generalized Douglas space, Period. Math. Hungar. 48 (2004), no. 1-2, 181-184.
  11. D. Bao, S. S. Chern, and Z. Shen, An Introduction to Riemannian Finsler Geometry, Graduate Texts in Math., 200, Springer-Verlag, 2000.
  12. B. Chen and Y. Shen, Kahler Finsler metrics are actually strongly Kahler, Chin. Ann. Math. Ser. B 30 (2009), no. 2, 173-178.
  13. J. Douglas, The general geometry of path, Ann. Math. 29 (1927), no. 1-4, 143-168.
  14. S. Kobayashi, Complex Finsler vector bundles, Finsler geometry (Seattle, WA, 1995), 145-153, Contemp. Math., 196, Amer. Math. Soc., Providence, RI, 1996.
  15. M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor (N.S.) 34 (1980), no. 3, 303-315.
  16. G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, Funda-mental Theories of Physics, 141. Kluwer Academic Publishers, Dordrecht, 2004.
  17. H. L. Royden, Complex Finsler metrics, Contemporary Math. 49 (1984), 119-124.
  18. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
  19. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publish-ers, Dordrecht, 2001.
  20. P. M. Wong, Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics, Imperial College Press, 2011.
  21. C. Zhong, On real and complex Berwald connections associated to strongly convex weakly Kahler-Finsler metric, Differential Geom. Appl. 29 (2011), no. 3, 388-408.

Cited by

  1. Generalized Zermelo Navigation on Hermitian Manifolds with a Critical Wind vol.72, pp.4, 2017,