• Kadri, Tlili (Faculte des Sciences de Tunis Campus Universitaire) ;
  • Omrani, Khaled (Institut Superieur des Sciences Appliquees et de Technologie de Sousse)
  • Received : 2016.12.23
  • Accepted : 2017.06.14
  • Published : 2018.01.31


In this paper, a nonlinear high-order difference scheme is proposed to solve the Extended-Fisher-Kolmogorov equation. The existence, uniqueness of difference solution and priori estimates are obtained. Furthermore, the convergence of the difference scheme is proved by utilizing the energy method to be of fourth-order in space and second-order in time in the discrete $L^{\infty}-norm$. Some numerical examples are given in order to validate the theoretical results.

Table 1. The maximum norm errors and spatial convergenceorder with ?xed time step k = 1/10000.

E1BMAX_2018_v55n1_297_t0001.png 이미지

Table 2. The maximum norm errors and temporal conver-gence order with ?xed space step h = 1/500.

E1BMAX_2018_v55n1_297_t0002.png 이미지


  1. G. Ahlers and D. S. Cannell, Vortex-front propagation in rotating Couette-Taylor Tow, Phys. Rev. Lett. 50 (1983), 1583-1586.
  2. G. D. Akrivis, Finite difference discretization of Kuramoto-Sivashinsky, Numer. Math. 63 (1992), no. 1, 1-11.
  3. D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33-76.
  4. F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., Vol. XVII, pp. 24-49 Amer. Math. Soc., Providence, R.I., 1965.
  5. P. Coullet, C. Elphick, and D. Repaux, Nature of spatial chaos, Phys. Rev. Lett. 58 (1987), no. 5, 431-434.
  6. G. T. Dee, W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett. 60 (1988), 2641-2644.
  7. M. Dehghan, A. Mohebbi, and Z. Asgari, Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numer. Algorithms 52 (2009), no. 4, 523-540.
  8. M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coecients, Comput. Phys. Commu. 181 (2010), no. 1, 43-51.
  9. D. He, Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation, Nonlinear Dynam. 85 (2016), no. 1, 479-498.
  10. D. He and K. Pan, A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation, Appl. Math. Comput. 271 (2015), 323-336.
  11. R. M. Hornreich, M. Luban, and S. Shtrikman, Critical behaviour at the onset of k-space instability at the $\lambda$ line, Phys. Rev. Lett. 35 (1975), 1678-1681.
  12. N. Khiari, T. Achouri, M. L. Ben Mohamed, and K. Omrani, Finite difference approximate solutions for the Cahn-Hilliard equation, Numerical Methods for Partial Differen-tial Eqs. 23 (2007), no. 2, 437-455.
  13. N. Khiari and K. Omrani, Finite difference discretization of the extended Fisher Kolmogorov equation in two dimensions, Comput. Math. Appl. 62 (2011), 4151-4160.
  14. A. Mohebbi and M. Dehghan, High-order solution of one-dimensional Sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Mod-elling 51 (2010), no. 5-6, 537-549.
  15. A. Mohebbi and M. Dehghan, High-order compact solution of the one-dimensional heat and advectiondi ffusion equations, Appl. Math. Model. 34 (2010), no. 10, 3071-3084.
  16. K. Omrani, A second order splitting method for a finite difference scheme for the Sivashinsky equation, Appl. Math. Lett. 16 (2003), no. 3, 441-445.
  17. K. Omrani, Numerical methods and error analysis for the nonlinear Sivashinsky equation, Appl. Math. Comput. 189 (2007), no. 1, 949-962.
  18. K. Omrani, F. Abidi, T. Achouri, and N. Khiari, A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput. 201 (2008), no. 1-2, 35-43.
  19. X. Pan, T.Wang, L. Zhang, and B. Guo, On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model. 36 (2012), no. 8, 3371-3378.
  20. X. Pan and L. Zhang, Numerical simulation for general Rosenau-RLW equation: an average linearized conservative scheme, Math. Probl. Eng. 2012 (2012), Article ID 517818, 15 pages.
  21. L. J. Tracius Doss and A. P. Nandini, An $H^1$-Galerkin Mixed Finite Element Method For The Extended Fisher-Kolmogorov Equation, Numer. Anal. Model. Ser. B Comput. Inform. 3, 4 (2012), 460-485.
  22. T. Wang, Convergence of an eighth-order compact difference scheme for the nonlinear Schrodinger equation, Adv. Numer. Anal. 2012 (2012), Article ID 913429, 24 pp.
  23. T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrodinger equation, J. Math. Anal. Appl. 412 (2014), no. 1, 155-167.
  24. T. Wang, B. Guo, and Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrodinger equation in two dimensions, J. Comput. Phys. 243 (2013), 382-399.
  25. T. Wang and Y. Jiang, Point-wise errors of two conservative difference schemes for the Klein-Gordon-Schrodinger equation, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 12, 4565-4575.
  26. Y. Zhou, Application of Discrete Functional Analysis to the Finite Difference Methods, International Academic Publishers, Bijing, 1990.
  27. G. Zhu, Experiments on director waves in nematic liquid crystals, Phys. Rev. Lett. 49 (1982), 1332-1335.