DOI QR코드

DOI QR Code

Multi-layer Caching Scheme Considering Sub-graph Usage Patterns

서브 그래프의 사용 패턴을 고려한 다중 계층 캐싱 기법

  • 유승훈 (충북대학교 정보통신공학과) ;
  • 정재윤 (충북대학교 정보통신공학과) ;
  • 최도진 (충북대학교 정보통신공학과) ;
  • 박재열 (충북대학교 정보통신공학과) ;
  • 임종태 (충북대학교 정보통신공학과) ;
  • 복경수 (충북대학교 정보통신공학과) ;
  • 유재수 (충북대학교 정보통신공학과)
  • Received : 2017.12.04
  • Accepted : 2018.01.11
  • Published : 2018.03.28

Abstract

Due to the recent development of social media and mobile devices, graph data have been using in various fields. In addition, caching techniques for reducing I/O costs in the process of large capacity graph data have been studied. In this paper, we propose a multi-layer caching scheme considering the connectivity of the graph, which is the characteristics of the graph topology, and the history of the past subgraph usage. The proposed scheme divides a cache into Used Data Cache and Prefetched Cache. The Used Data Cache maintains data by weights according to the frequently used sub-graph patterns. The Prefetched Cache maintains the neighbor data of the recently used data that are not used. In order to extract the graph patterns, their past history information is used. Since the frequently used sub-graphs have high probabilities to be reused, they are cached. It uses a strategy to replace new data with less likely data to be used if the memory is full. Through the performance evaluation, we prove that the proposed caching scheme is superior to the existing cache management scheme.

Keywords

Graph;In-memory;Caching;Data replacement;Frequent Pattern Detection

Acknowledgement

Supported by : 정보통신기술진흥센터, 한국연구재단

References

  1. A Cuzzocrea, F Furfaro, G. M. Mazzeo, and D. Sacca, "A grid framework for approximate aggregate query answering on summarized sensor network readings," Proc. OTM Workshops, pp.144-153, 2004.
  2. A. Fariha, C. F. Ahmed, C. K. Leung, S. M. Abdullah, and L. Cao, "Mining frequent patterns from human interactions in meetings using directed acyclic graphs," Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.38-49, 2013.
  3. 임종태, 복경수, 유재수, "대용량 그래프 환경에서 스카이라인을 이용한 서브 그래프 유사도 측정 기법," 한국콘텐츠학회 종합학술대회, pp.47-48, 2017.
  4. G. Linden, B. Smith, and J. York, "Amazon.com recommendations: item-to-item collaborative filtering," IEEE Internet Computing, Vol.7, No.1, pp.76-80, 2003. https://doi.org/10.1109/MIC.2003.1167344
  5. Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan, "Large-Scale Parallel Collaborative Filtering for the Netflix Prize," Proc. International Conference on Algorithmic Aspects in Information and Management, pp.337-348, 2008.
  6. J. E. Gonzalez, Y. Low, and H. Gu, "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs," Proc. USENIX Symposium on Operating Systems Design and Implementation, pp.17-30, 2012.
  7. 서복일, 김재인, 황부현, "스트림 데이터 환경에서 배치 가중치를 이용하여 사용자 특성을 반영한 빈발항목 집합 탐사," 한국콘텐츠학회논문지, 제 11권, 제1호, pp.56-64, 2011. https://doi.org/10.5392/JKCA.2011.11.1.056
  8. U. Gupta and L. Fegaras, "Distributed Incremental Graph Analysis," Proc. IEEE International Congress on BigData, pp.75-82, 2016.
  9. https://memcached.org/
  10. P Ran, W Zhou, and J Han, "NYNN: An In-Memory Distributed Storage System for massive graph analysis," Proc. International Conference on Advanced Computational Intelligence, pp.383-389, 2015.
  11. H. Aksu, M. Canim, Y. Chang, I. Korpeoglu, and O. Ulusoy, "Graph Aware Caching Policy for Distributed Graph Stores," Proc. International Conference on Cloud Engineering, pp.6-15, 2015.
  12. T. R. F'uzak, Analysis of cache replacement algorithms, Ph.D. dissertation, University of Massachusetts Amherst, 1985.
  13. R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani, "Scaling Memcache at Facebook," Proc. USENIX Symposium on Networked Systems Design and Implementation, pp.385-398, 2013.
  14. https://neo4j.com/docs/
  15. G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, "Pregel: a system for large-scale graph processing," Proc. ACM SIGMOD International Conference on Management of data, pp.135-146, 2010.
  16. P. Braun, J. J. Cameron, A. Cuzzocrea, F. Jiang, and C. K. Leung, "Effectively and Efficiently Mining Frequent Patterns from Dense Graph Streams on Disk," Proc. International Conference in Knowledge Based and Intelligent Information and Engineering Systems, pp.338-347, 2014.
  17. http://socialcomputing.asu.edu
  18. https://snap.stanford.edu/
  19. A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, "Measurement and Analysis of Online Social Networks," Proc. ACM SIGCOMM Internet Measurement Conference, pp.29-42, 2007.
  20. J. Han, J. Pei, and Y. Yin, "Mining Frequent Patterns without Candidate Generation," Proc. ACM SIGMOD International Conference on Management of Data, pp.1-12, 2000.
  21. N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, and H. C. Li, "Tao: Facebook's distributed data store for the social graph," Proc. USENIX Annual Technical Conference, pp.49-60, 2013.
  22. Han, Jiawei, Jian Pei, and Yiwen Yin, "Mining frequent patterns without candidate generation," Proc. ACM SIGMOD International Conference on Management of Data, pp.1-12, 2000.
  23. C. Borgelt, "An Implementation of the FP-growth Algorithm," Proc. International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp.1-5, 2005.