DOI QR코드

DOI QR Code

Numerical Analysis of the Incident Ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure

  • Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Oh, Sehun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Ho Jun (Memory Thin Film Technology Team, Samsung Electronics) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2018.01.12
  • Accepted : 2018.04.03
  • Published : 2018.03.31

Abstract

The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.

Acknowledgement

Supported by : Pusan National University

References

  1. T. Makabe and T. Yakisawa, Mater. Sci. Forum 555, 65-71 (2007). https://doi.org/10.4028/www.scientific.net/MSF.555.65
  2. Z. Hua-Yu and M. Zong-Xin, Chinese Phys. B 17, 1475-1479 (2008). https://doi.org/10.1088/1674-1056/17/4/055
  3. V. K. Decyk and T. V. Singh, Comput. Phys. Comm. 185, 708-719 (2014). https://doi.org/10.1016/j.cpc.2013.10.013
  4. C. K. Birdsall and A. b. Langdon, Plasma Physics vis Computer Simulation, Taylor & Francis Group (2005).
  5. V. Vahedi and M. Surendra, Comput. Phys. Comm. 87, 179-198 (1995). https://doi.org/10.1016/0010-4655(94)00171-W
  6. P. Sigmund, Phys. Rev. 184, 383-416 (1969). https://doi.org/10.1103/PhysRev.184.383
  7. M. P. Seah and T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010). https://doi.org/10.1088/0022-3727/43/25/253001
  8. R. Behrisch and W. Eckstein, Sputtering by particle Bombardment, Springer (2007).
  9. Y. Yamamura and H. Tawara, Atom. Data Nucl. Data 62, 149-253 (1996). https://doi.org/10.1006/adnd.1996.0005
  10. V. Vahedi and G. DiPeso, J. Comput. Phys. 131, 149-163 (1997). https://doi.org/10.1006/jcph.1996.5591
  11. S. Kuroiwa, T. Mine, T. Yakisawa and T. Makabe, J. Vac. Sci. Technol. B 23, 2218-2221 (2005). https://doi.org/10.1116/1.2009771
  12. I. Kolev and A. Bogaerts, IEEE T. Plasma Sci. 34, 886-894 (2006) https://doi.org/10.1109/TPS.2006.875843
  13. P. J. Kelly and R. D. Arnell, Vaccum 56, 159-172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
  14. W. Gao, Z. Li, Ceram. Int. 30, 1155-1159 (2004). https://doi.org/10.1016/j.ceramint.2003.12.197
  15. K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Tech. 204, 1661-1684 (2010). https://doi.org/10.1016/j.surfcoat.2009.11.013
  16. K. Ellmer and T. Welzel, J. Mater. Res. 27, 765-779 (2012). https://doi.org/10.1557/jmr.2011.428
  17. S. H. Jeong and J. H. Boo, Thin Solid Films 447-448, 105-110 (2004).
  18. S. Mraz and J. M. Schneider, J. Appl. Phys. 100, 023503 (2006). https://doi.org/10.1063/1.2216354
  19. M.-J. Keum and J.-H. Han J. Korean Phys. Soc. 53, 1580-1583 (2008). https://doi.org/10.3938/jkps.53.1580
  20. H. C. Nguyen, T. T. Trinh, T. Le, C. V. Tran, T. Tran, H. Park, V. A. Dao, and J. Yi, Semicond. Sci. Technol. 26, 105022 (2011). https://doi.org/10.1088/0268-1242/26/10/105022
  21. J. P. Verboncoeur, Plasma, Phys. Controlled Fusion 47, A231 (2005). https://doi.org/10.1088/0741-3335/47/5A/017
  22. C. H. Shon, J. K. Lee, H. J. Lee, Y. Yang, and T. H. Chung, IEEE T. Plasma Sci. 26, 1635-1644 (1998). https://doi.org/10.1109/27.747881
  23. C. H. Shon and J. K. Lee, Appl. Surf. Sci. 192, 258-269 (2002). https://doi.org/10.1016/S0169-4332(02)00030-2