DOI QR코드

DOI QR Code

Temperature Measurement Techniques for RAON Cryomodule

  • Kim, Heetae (Rare Isotope Science Project, Institute for Basic Science) ;
  • Jung, Yoochul (Rare Isotope Science Project, Institute for Basic Science) ;
  • Jo, Yong Woo (Rare Isotope Science Project, Institute for Basic Science) ;
  • Lee, Min Ki (Rare Isotope Science Project, Institute for Basic Science) ;
  • Choi, Jong Wan (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Youngkwon (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Juwan (Rare Isotope Science Project, Institute for Basic Science) ;
  • Paeng, Won-Gi (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Moo Sang (Rare Isotope Science Project, Institute for Basic Science) ;
  • Jung, Hoechun (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kwon, Young Kwan (Rare Isotope Science Project, Institute for Basic Science)
  • Received : 2018.03.14
  • Accepted : 2018.03.28
  • Published : 2018.03.31

Abstract

Conducting and semiconducting temperature sensors are calibrated and applied to cryomodules. The definition of temperature is introduced and the pressure in vacuum is shown as a function of temperature. The resistance of Drude model is shown as a function of carrier density and mean free path. Temperature sensors are calibrated with Physical Property Measurement System (PPMS). The temperature sensors are applied to measure temperature accurately in RAON cryomodules.

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. H. S. Leff, Am. J. Phys. 70, 792 (2002). https://doi.org/10.1119/1.1479743
  2. J. S. Steinhart and S. R. Hart, Deep-Sea Res. Oceanogr. Abstr.15, 497 (1968). https://doi.org/10.1016/0011-7471(68)90057-0
  3. Sun Kee Kim et al., Baseline Design Summary, http://risp.ibs.re.kr/orginfo/info_blds.do.
  4. S. J Yu, S. J. Youn, and H. Kim, Physica B, 405, 638 (2010). https://doi.org/10.1016/j.physb.2009.09.079
  5. H. Kim, S. C. Lim, and Y. H. Lee, Phys. Letts. A. 375, 2661 (2011). https://doi.org/10.1016/j.physleta.2011.05.051
  6. H. Kim, S. J. Youn, and S. J. Yu, J. Korean Phys. Soc. 56, 554 (2010). https://doi.org/10.3938/jkps.56.554
  7. H. Kim, W. K. Kim, G.T. Park, I. Shin, S. Choi, and D.O. Jeon, Infrared Phys. Technol. 67, 600 (2014). https://doi.org/10.1016/j.infrared.2014.10.003
  8. H. Kim, M.S. Han, D. Perello, and M. Yun, Infrared Phys. Technol. 60, 7(2013). https://doi.org/10.1016/j.infrared.2013.03.003
  9. H. Kim, C.S. Park, and M.S. Han, Opt.Commun.325, 68 (2014). https://doi.org/10.1016/j.optcom.2014.04.004
  10. H. Kim, W. K. Kim, G.T. Park, C. S. Park, and H. D. Cho, Infrared Phys. Technol. 67, 49 (2014). https://doi.org/10.1016/j.infrared.2014.07.007
  11. H. Kim, Y. S. Chang, W. K. Kim, Y. W. Jo, and H. J. Kim,Appl. Sci. Converg. Technol. 24, 77 (2015). https://doi.org/10.5757/ASCT.2015.24.4.77
  12. W. Steckelmacher and M.W. Lucas, J. Phys.D:Appl. Phys., 16, 1453 (1983). https://doi.org/10.1088/0022-3727/16/8/012
  13. L. Fustoss and G Toth, Vacuum, 40, 43 (1990). https://doi.org/10.1016/0042-207X(90)90115-F
  14. S. Choi, G.T. Park, and H. Kim, Appl. Sci. Converg. Technol. 24, 132 (2015). https://doi.org/10.5757/ASCT.2015.24.5.132