DOI QR코드

DOI QR Code

Redox Reaction Investigation of Graphene Nanoribbon

  • Yu, Young-Jun (Department of Physics, Chungnam National University)
  • Received : 2018.03.19
  • Accepted : 2018.03.27
  • Published : 2018.03.31

Abstract

The redox reaction on graphene nanoribbon (GNR) field effect transistors(FET) has been studied. In detail, upon employing an electrolyte gating, we verified electron transport performance modulation of GNR FET by monitoring conductance variation under oxidation and reduction processes. The conductance enhancement of GNR via removal of PMMA residue on graphene surface during redox cycles was also observed.

Acknowledgement

Supported by : Chungnam National University

References

  1. E. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss, and P. G. Collins, Science 315, 77-81 (2007). https://doi.org/10.1126/science.1135303
  2. S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. -J. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, Nature Nanotechnol. 6, 126-132 (2011). https://doi.org/10.1038/nnano.2010.275
  3. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 768-771 (2009). https://doi.org/10.1126/science.1170335
  4. P. Ramesh, M. E. Itkis, E. Bekyarova, F. Wang, S. Niyogi, X. Chi, C. Berger, W. der Heer, and R. C. Haddon, J. Am. Chem. Soc. 132, 14429-14436 (2010). https://doi.org/10.1021/ja101706j
  5. G. P. Kotchey, B. L. Allen, H. Vedala, N. Yanamala, A. A. Kapralov, Y. Y. Tyurina, J. Klein-Seetharaman, and V. E. Kagan, A. Star, ACS Nano 5, 2098-2108 (2011). https://doi.org/10.1021/nn103265h
  6. I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano lett. 8, 4283-4287 (2008). https://doi.org/10.1021/nl8019938
  7. L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, Nano lett. 8, 1965-1970 (2008). https://doi.org/10.1021/nl0808684
  8. A. B. Kalser, C. Gomez-Navarro, R. S. Sundaram, M. Burghard, and K. Kern, Nano lett. 9, 1787-1792 (2009). https://doi.org/10.1021/nl803698b
  9. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, Nano lett. 8, 3137-3140 (2008). https://doi.org/10.1021/nl8013007
  10. L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, Appl. Phys. Lett. 93, 093107 (2008). https://doi.org/10.1063/1.2976429
  11. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, Appl. Phys. Lett. 94, 082107 (2009). https://doi.org/10.1063/1.3089693
  12. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M. K. Yakes, A. R. Laracuente, Z. Dai, S. R. Marder, C. Berger, W. P. King, W. A. der Heer, P. E. Sheehan, and E. Riedo, Science 328, 328, 1373-1376 (2010). https://doi.org/10.1126/science.1188119
  13. S. Neubeck, L. A. Ponomarnko, F. Freitag, A. J. M. Giesbers, U. Zeitler, S. V. Morozov, P. Blake, A. K. Geim, and K. S. Novoselov, Small 6, 1469-1473 (2011).
  14. I. -S. Byun, D. Yoon, J. S. Choi, I. Hwang, D. H. Lee, M. J. Lee, T. Kawai, Y. -W. Son, Q. Jia, H. Cheong, and B. H. Park, ACS Nano 5, 6417-6424 (2011). https://doi.org/10.1021/nn201601m
  15. Y. Shao, G. Yin, J. Zhang, and Y. Gao, Electrochem. Acta 51, 5853-5857 (2006). https://doi.org/10.1016/j.electacta.2006.03.021