Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh (Department of Architectural Engineering, Sejong University) ;
  • Shin, Soomi (Research Institute of Industrial Technology, Pusan National University) ;
  • Lee, Dongkyu (Department of Architectural Engineering, Sejong University)
  • Received : 2017.09.23
  • Accepted : 2018.02.22
  • Published : 2018.04.25


This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.


Supported by : NRF(National Research Foundation of Korea)


  1. Alonso, C., Ansola, R. and Querin, O.M. (2014), "Topology synthesis of multi-material compliant mechanisms with a Sequential Element Rejection and Admission method", Finite Elem. Anal. Des., 85, 11-19.
  2. Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization of design for continuum structures with crack", Compos. Struct., 186, 193-209.
  3. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Methods Appl. Mech. Eng., 71(2), 197-224.
  4. Bendsoe, M.P. and Sigmund, O. (2004), Topology Optimization: Theory, Methods, and Applications, SpringerVerlag Berlin Heidelberg, New York, NY, USA.
  5. Belblidia, F., Lee, J.E.B., Rechak, S. and Hinton, E. (2001), "Topology optimization of plate structures using a single- or three-layered artificial material model", Adv. Eng. Software, 32(2), 159-168.
  6. Blasques, J.P. and Stolpe, M. (2012), "Multi-material topology optimization of laminated composite beam cross sections", Mater. Des., 94(11), 3278-3289.
  7. Doan, Q.H. and Lee, D. (2017), "Optimum topology design of multi-material structures with non-spurious buckling constraints", Adv. Eng. Software, 114, 110-120.
  8. Du, Y., Li, H., Luo, Z. and Tian, Q. (2017), "Topological design optimization of lattice structures to maximize shear stiffness", Advances in Engineering Software, 112, 211-221.
  9. Goo, S., Wang, S., Hyun, J. and Jung, J. (2016), "Topology optimization of thin plate structures with bending stress constraints", Comput. Struct., 175, 134-143.
  10. Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162.
  11. Lee, D.K. and Shin, S.M. (2015), "Optimising node density-based structural material topology using eigenvalue of thin steel and concrete plates", Mater. Res. Innov., 19, 1241-1245.
  12. Lee, D. and Shin, S. (2016), "Evaluation of Optimized Topology Design of Cross-Formed Structures with a Negative Poisson's Ratio", Iran. J. Sci. Technol., Transact. Civil Eng., 40(2), 109-120.
  13. Lee, D., Shin, S., Lee, J. and Lee, K. (2015), "Layout evaluation of building outrigger truss by using material topology optimization", Steel Compos. Struct., Int. J., 19(2), 263-275.
  14. Lee, D., Lee, J. and Doan, Q.H. (2017), "Multi-layered UL700 arch-grid module with inelastic buckling for localized reinforcement of soft ground", Adv. Eng. Software, 110, 14-25.
  15. Liu, Q., Chan, R. and Huang, X. (2016a), "Concurrent topology optimization of macrostructures and material microstructures for natural frequency", Mater. Des., 106, 380-390.
  16. Liu, P., Luo, Y. and Kang, Z. (2016b), "Multi-material topology optimization considering interface behavior via XFEM and level set method", Computer Methods in Applied Mechanics and Engineering, 308, 113-133.
  17. Qiao, S., Han, X., Zhou, K. and Ji, J. (2016), "Seismic analysis of steel structure with brace configuration using topology optimization", Steel Compos. Struct., Int. J., 21(3), 501-515.
  18. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), "Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization", Steel Compos. Struct., Int. J., 21(6), 1287-1306.
  19. Sheng, G.G. and Wang, X. (2008), "Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium", J. Reinf. Plast. Compos., 27(2), 117-134.
  20. Tavakoli, R. and Mohseni, S.M. (2014), "Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation", Struct. Multidiscipl. Optimiz., 49(4), 621-642.
  21. Vatanabe, S.L., Lippi, T.N., de Lima, C.R., Paulino, G.H. and Silva, E.C. (2016), "Topology optimization with manufacturing constraints: A unified projection-based approach", Adv. Eng. Software, 100, 97-112.
  22. Xia, Q. and Wang, M.Y. (2008), "Topology optimization of thermoelastic structures using level set method", Computat. Mech., 42(6), 837.
  23. Yan, K., Cheng, G. and Wang, B.P. (2016), "Topology optimization of plate structures subject to initial excitations for minimum dynamic performance index", Struct. Multidiscipl. Optimiz., 53(3), 623-633.
  24. Yun, K.S. and Youn, S.K. (2017), "Multi-material topology optimization of viscoelastically damped structures under timedependent loading", Finite Elem. Anal. Des., 123, 9-18.
  25. Zhou, S. and Wang, M.Y. (2006), "3D multi-material structural topology optimization with the generalized Cahn-Hilliard equations", Comput. Model. Eng. Sci., 16(2), 83-101.
  26. Zhou, S. and Wang, M.Y. (2007), "Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition", Struct. Multidiscipl. Optimiz., 33(2), 89.
  27. Zienkiewicz, O.C. (2000), The Finite Element Method: Solid Mechanics, Butterworth-Heinemann, United Kingdom.
  28. Zienkiewicz, O.C. and Taylor, R.L. (2013), The Finite Element Method: Its Basis and Fundamentals, ButterworthHeinemann, United Kingdom.