DOI QR코드

DOI QR Code

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin (Department of Earth Sciences, Pusan National University) ;
  • Kang, Hyesung (Department of Earth Sciences, Pusan National University) ;
  • Ryu, Dongsu (Department of Physics, School of Natural Sciences, UNIST)
  • Received : 2018.03.12
  • Accepted : 2018.04.10
  • Published : 2018.04.30

Abstract

Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Ackermann, M., Ajello, M., Allafort, A., et al. 2011, A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble, Science, 334, 1103 https://doi.org/10.1126/science.1210311
  2. Amato, E. 2014, The Theory of Pulsar Wind Nebulae, IJMPS, 28, 1460160
  3. Binns, W. R., Wiedenbeck, M. E., Arnould, M., et al. 2005, Cosmic-Ray Neon, Wolf-Rayet Stars, and the Superbubble Origin of Galactic Cosmic Rays, ApJ, 634, 1 https://doi.org/10.1086/429080
  4. Blandford, R. D., & Eichler, D. 1987, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rep., 154, 1 https://doi.org/10.1016/0370-1573(87)90134-7
  5. Blasi, P. 2013, The Origin of Galactic Cosmic Rays, A&A Rev., 21, 70 https://doi.org/10.1007/s00159-013-0070-7
  6. Bykov, A. M. 2014, Nonthermal Particles and Photons in Starburst Regions and Superbubbles, A&A Rev., 22, 77 https://doi.org/10.1007/s00159-014-0077-8
  7. Casse, M., & Paul, J. A. 1980, Local Gamma Rays and Cosmic-Ray Acceleration by Supersonic Stellar Winds, ApJ, 237, 236 https://doi.org/10.1086/157863
  8. Caprioli, D. 2015, Cosmic-Ray Acceleration and Propagation, Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), 34, 8
  9. Caprioli, D., & Spitkovsky, A. 2014, Simulations of Ion Acceleration at Non-Relativistic Shocks. I. Acceleration Efficiency, ApJ, 783, 91 https://doi.org/10.1088/0004-637X/783/2/91
  10. De Becker, M. 2007, Non-Thermal Emission Processes in Massive Binaries, A&A Rev., 14, 171 https://doi.org/10.1007/s00159-007-0005-2
  11. De Becker, M., Benaglia, P., Romero, G. E., & Peri, C. S. 2017, An Investigation into the Fraction of Particle Accelerators among Colliding-wind Binaries. Towards an Extension of the Catalogue, A&A, 600, A47 https://doi.org/10.1051/0004-6361/201629110
  12. De Becker, M., & Raucq, F. 2013 Catalogue of Particle-Accelerating Colliding-Wind Binaries, A&A, 558, A28 https://doi.org/10.1051/0004-6361/201322074
  13. de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, Mass Loss Rates in the Hertzsprung-Russell Diagram, A&AS, 72, 259
  14. del Valle, M. V., & Romero, G. E. 2012, Non-Thermal Processes in Bowshocks of Runaway Stars. Application to Zeta Ophiuchi, A&A, 543, A56 https://doi.org/10.1051/0004-6361/201218937
  15. del Valle, M. V., Romero, G. E., & Santos-Lima, R. 2015, Runaway Stars as Cosmic Ray Injectors inside Molecular Clouds, MNRAS, 448, 207 https://doi.org/10.1093/mnras/stu2732
  16. Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
  17. Drury, L. O'C. 2012, Origin of Cosmic Rays, Astropart. Phys., 39, 52
  18. Dupree, A. K. 1986, Mass Loss from Cool Stars, ARA&A, 24, 377 https://doi.org/10.1146/annurev.aa.24.090186.002113
  19. Ekstrom, S., Georgy, C., Eggenberger, P., et al. 2012, Grids of Stellar Models with Rotation I. Models from 0.8 to 120 $M_{\odot}$ at Solar Metallicity (Z = 0.014), A&A, 537, A146 https://doi.org/10.1051/0004-6361/201117751
  20. Freyer, T., Hensler, G., & Yorke, H. W. 2003, Massive Stars and the Energy Balance of the Interstellar Medium. I. The Impact of an Isolated 60 $M_{\odot}$ Star, ApJ, 594, 888 https://doi.org/10.1086/376937
  21. Garcia-Segura, G., Langer, N., & Mac Low, M.-M. 1996a, The Hydrodynamic Evolution of Circumstellar Gas around Massive Stars. II. The Impact of the Time Sequence O Star $\rightarrow$ RSG $\rightarrow$ WR Star, A&A, 316, 133
  22. Garcia-Segura, G., Mac Low, M.-M., & Langer, N. 1996b, The Dynamical Evolution of Circumstellar Gas around Massive Stars. I. The Impact of the Time Sequence O Star $\rightarrow$ LBV $\rightarrow$ WR Star, A&A, 305, 229
  23. Georgy, C., Ekstrom, S., Meynet, G., et al. 2012, Grids of Stellar Models with Rotation II. WR Populations and Supernovae/GRB Progenitors at Z = 0.014, A&A, 542, A29 https://doi.org/10.1051/0004-6361/201118340
  24. Georgy, C., Walder, R., Folini, D., et al. 2013, Circumstellar Medium around Rotating Massive Stars at Solar Metallicity, A&A, 559, A69 https://doi.org/10.1051/0004-6361/201321226
  25. Higdon, J. C., Lingenfelter, R. E., & Ramaty, R. 1998, Cosmic-Ray Acceleration from Supernova Ejecta in Superbubbles, ApJL, 509, L33 https://doi.org/10.1086/311757
  26. Higdon, J. C., & Lingenfelter, R. E. 2013, The Galactic Spatial Distribution of OB Associations and Their Surrounding Supernova-Generated Superbubbles, ApJ, 775, 110 https://doi.org/10.1088/0004-637X/775/2/110
  27. Hillas, A. M. 2005, Can Diffusive Shock Acceleration in Supernova Remnants Account for High Energy Galactic Cosmic Rays?, J. Phys. G, 31, R95 https://doi.org/10.1088/0954-3899/31/5/R02
  28. Jura, M., & Kleinmann, S. G. 1990, Mass-Losing M Supergiants in the Solar Neighborhood, ApJS, 73, 769 https://doi.org/10.1086/191488
  29. Kroupa, P., & Boily, C. M., 2002, On the Mass Function of Star Clusters, MNRAS, 336, 1188 https://doi.org/10.1046/j.1365-8711.2002.05848.x
  30. Kroupa, P., Weidner, C., Pflamm-Altenburg, J., et al. 2013, The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations, in Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, ed. T. D. Oswalt & G. Gilmore (Dordrecht: Springer), 115
  31. Krticka, J., & Kubat, J. 2010, Comoving Frame Models of Hot Star Winds. I. Test of the Sobolev Approximation in the Case of Pure Line Transitions, A&A, 519, A50 https://doi.org/10.1051/0004-6361/201014111
  32. Krticka, J. 2014, Mass Loss in Main-Sequence B Stars, A&A, 564, A70 https://doi.org/10.1051/0004-6361/201321980
  33. Lamers, H. J. G. L. M., & Leitherer, C. 1993, What Are the Mass-Loss Rates of O Stars?, ApJ, 412, 771 https://doi.org/10.1086/172960
  34. Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M. 1995, Terminal Velocities and the Bi-Stability of Stellar Winds, ApJ, 455, 269. https://doi.org/10.1086/176575
  35. Mauron, N., & Josselin, E. 2011, The Mass-Loss Rates of Red Supergiants and the de Jager Prescription, A&A, 526, A156 https://doi.org/10.1051/0004-6361/201013993
  36. McKee, C. F., & Ostriker, E. C. 2007, Theory of Star Formation, ARA&A, 45, 565 https://doi.org/10.1146/annurev.astro.45.051806.110602
  37. Meyer, D. M.-A., Mackey, J., Langer, N., et al. 2014, Models of the Circumstellar Medium of Evolving, Massive Runaway Stars Moving through the Galactic Plane, MNRAS, 444, 2754 https://doi.org/10.1093/mnras/stu1629
  38. Miller, G., & Scalo, J. M. 1979, The Initial Mass Function and Stellar Birthrate in the Solar Neighborhood, ApJS, 41, 513. https://doi.org/10.1086/190629
  39. Muijres, L. E., Jorick Vink, S., de Koter, A., Mller, P. E., & Langer, N. 2012, Predictions for Mass-Loss Rates and TerminalWind Velocities of Massive O-Type Stars, A&A, 537, A37 https://doi.org/10.1051/0004-6361/201015818
  40. Nieuwenhuijzen, H., & de Jager, C. 1990, Parametrization of Stellar Rates of Mass Loss as Functions of the Fundamental Stellar Parameters M, L, and R, A&A, 231, 134
  41. Nugis, T., & Lamers, H. J. G. L. M. 2000, Mass-Loss Rates of Wolf-Rayet Stars as a Function of Stellar Parameters, A&A, 360, 227
  42. Puls, J., Vink, J. S., & Najarro, F. 2008, Mass Loss from Hot Massive Stars, A&A Rv, 16, 209 https://doi.org/10.1007/s00159-008-0015-8
  43. Reed, B. C. 2005, New Estimates of the Solar-Neighborhood Massive Star Birthrate and the Galactic Supernova Rate, AJ, 130, 1652 https://doi.org/10.1086/444474
  44. Riquelme, M. A., & Spitkovsky, A. 2011, Electron Injection by Whistler Waves in Non-Relativistic Shocks, ApJ, 733, 63 https://doi.org/10.1088/0004-637X/733/1/63
  45. Salpeter, E. E. 1955, The Luminosity Function and Stellar Evolution, ApJ, 121, 161 https://doi.org/10.1086/145971
  46. Scalo, J. M. 1986, The Stellar Initial Mass Function, FCPh, 11, 1
  47. Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, New Grids of Stellar Models from 0.8 to 120 Solar Masses at Z = 0.020 and Z = 0.001, A&AS, 96, 269
  48. Schmidt, M. 1959, Derivation of the Initial Luminosity Function and the Past Rate of Star Formation, International Astronomical Union. Symposium 10, 99
  49. Sironi, L., & Cerutti, B. 2017, Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling, in Modelling Pulsar Wind Nebulae, Astrophysics and Space Science Library, ed. D. F. Torres, 446, 247
  50. Smith, N. 2014, Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars, ARA&A, 52, 487 https://doi.org/10.1146/annurev-astro-081913-040025
  51. Strong, A, W., Porter, T. A., Digel, S. W., et al. 2010, Global Cosmic-Ray-Related Luminosity and Energy Budget of the Milky Way, ApJL, 722, L57
  52. Treumann, R. A. 2009, Fundamentals of Collisionless Shocks for Astrophysical Application, 1. Non-Relativistic Shocks, A&A Rv, 174, 409
  53. van Marle, A. J., Meliani, Z., & Marcowith, A. 2012, A Hydrodynamical Model of the Circumstellar Bubble Created by Two Massive Stars, A&A, 541, L8 https://doi.org/10.1051/0004-6361/201219180
  54. Vink, J. S. 2015, Mass-Loss Rates of Very Massive Stars, in Very Massive Stars in the Local Universe, Astrophysics and Space Science Library, ed. J. S. Vink, 412, 77
  55. Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 1999, On the Nature of the Bi-Stability Jump in the Winds of Early-Type Supergiants, A&A, 380, 181.
  56. Vink, J. S., de Koter, A., & Lamers, H. J. G .L. M. 2000, New Theoretical Mass-Loss Rates of O and B Stars, A&A, 362, 295
  57. Vink, J. S., de Koter, A., & Lamers, H. J. G .L. M. 2001, Mass-Loss Predictions for O and B Stars as a Function of Metallicity, A&A, 369, 574 (VKL01) https://doi.org/10.1051/0004-6361:20010127
  58. Volk, H. J., & Forman, M. 1982, Cosmic Rays and Gamma-Rays from OB Stars, ApJ, 253, 188 https://doi.org/10.1086/159623
  59. Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, Interstellar Bubbles. II - Structure and Evolution, ApJ, 218, 377 https://doi.org/10.1086/155692
  60. Weidner, C., Kroupa, P., Pflamm-Altenburg, J., & Vazdekis, A. 2013, The Galaxy-Wide Initial Mass Function of Dwarf Late-Type to Massive Early-Type Galaxies, MNRAS, 436, 3309 https://doi.org/10.1093/mnras/stt1806
  61. Yoon, S.-C., 2015, Evolutionary Models for Type Ib/c Supernova Progenitors, PASA, 32, 15
  62. Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, Type Ib/c Supernovae in Binary Systems. I. Evolution and Properties of the Progenitor Stars, ApJ, 725, 940 https://doi.org/10.1088/0004-637X/725/1/940
  63. Zakhozhay, V. A. 2013, Lifetimes of Stars in the Main Sequence and the Maximum Mass of Stars in the Galactic Disk, Kinematics and Physics of Celestial Bodies, 29, 195 https://doi.org/10.3103/S0884591313040065
  64. Zinnecker, H., & Yorke, H. W. 2007, Toward Understanding Massive Star Formation, ARA&A, 45, 481 https://doi.org/10.1146/annurev.astro.44.051905.092549

Cited by

  1. The Role of Magnetic Fields in Setting the Star Formation Rate and the Initial Mass Function vol.6, pp.2296-987X, 2019, https://doi.org/10.3389/fspas.2019.00007