DOI QR코드

DOI QR Code

Concurrence of Rank-two Multipartite Quantum States

2-계수 양자상태의 양자얽힘 분석

  • Bae, Joonwoo (Department of Applied Mathematics, Hanyang University (ERICA))
  • 배준우 (한양대학교(에리카) 응용수학과)
  • Received : 2018.03.05
  • Accepted : 2018.03.28
  • Published : 2018.04.25

Abstract

In this work, we derive a general lower bound to concurrence of an arbitrary mixture of two pure states, that is, rank-two multipartite quantum states. We show that the lower bound can tightly detect entanglement of rank-two states, and also can be implemented experimentally with present-day technologies, i.e. single-copy level measurement and classical post-processing.

Acknowledgement

Supported by : 한국연구재단

References

  1. J. Bae, "Designing quantum information processing via structural physical approximatios," Rep. Prog. Phys. 80, 10 (2017).
  2. R. F. Werner, "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model," Phys. Rev. A 40, 4277 (1988).
  3. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement," Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865
  4. O. Guhne and G. Toth, "Entanglement detection," Phys. Rep. 474, 1 (2009). https://doi.org/10.1016/j.physrep.2009.02.004
  5. M. Curty, M. Lewenstein, and N. Lutkenhaus, "Entanglement as precondition for secure quantum key distribution," Phys. Rev. Lett. 92, 217903 (2004). https://doi.org/10.1103/PhysRevLett.92.217903
  6. A. Acin and N. Gisin, "Quantum correlations and secret bits," Phys. Rev. Lett. 94, 020501 (2005). https://doi.org/10.1103/PhysRevLett.94.020501
  7. R. Raussendorf and H. Briegel, "A one-way quantum computer," Phys. Rev. Lett. 86, 5188 (2001). https://doi.org/10.1103/PhysRevLett.86.5188
  8. G. Smith and J. Yard, "Quantum communication with zero-capacity channels," Sci. 321, 1812-1816 (2008). https://doi.org/10.1126/science.1162242
  9. L. Gurvits, "Classical deterministic complexity of edmonds problem and quantum entanglement," in Proc. 35th Annual ACM Symposium on Theory of Computing (USA, Jun. 2003), pp. 10-19.
  10. M. Horodecki, P. Horodecki, and R. Horodecki, "Separability of mixed states: necessary and sufficient conditions," Phys. Lett. A 223, 1-8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2
  11. A. Peres, "Separability Criterion for Density Matrices," Phys. Rev. Lett. 77, 1413-1415 (1996). https://doi.org/10.1103/PhysRevLett.77.1413
  12. M.-D. Choi, "Some assorted inequalities for positive linear maps on C*-algebras," J. Operator Theory, 4, 271-285 (1980).
  13. H.-P. Breuer, "Optimal Entanglement Criterion for Mixed Quantum States," Phys. Rev. Lett. 97, 080501 (2006). https://doi.org/10.1103/PhysRevLett.97.080501
  14. W. Hall, "A new criterion for indecomposability of positive maps," J. Phys. A 39, 14119 (2006). https://doi.org/10.1088/0305-4470/39/45/020
  15. J. Korbicz, M. Almeida, J. Bae, M. Lewenstein, and A. Acin, "Structural approximations to positive maps and entanglement breaking channels," Phys. Rev. A 78, 062105 (2008). https://doi.org/10.1103/PhysRevA.78.062105
  16. G. Vidal, "Entanglement Monotone," J. Mod. Opt. 47, 355 (2000). https://doi.org/10.1080/09500340008244048
  17. C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters "Mixed State Entanglement and Quantum Error Correction". Phys. Rev. A. 54 3824-3851 (1996). https://doi.org/10.1103/PhysRevA.54.3824
  18. M. Christand and A. Winter, "Squashed entanglement - an additive entanglement measure," J. Maths. Phys. 45, 829 (2003).
  19. W. Wootters, "Entanglement of formation of an arbitrary state of two qubits," Phys. Rev. Lett. 80, 2245-2248 (1998). https://doi.org/10.1103/PhysRevLett.80.2245
  20. A. Uhlmann, "Fidelity and concurrence of conjugated states," Phys. Rev. A 62, 032307 (2000). https://doi.org/10.1103/PhysRevA.62.032307
  21. P. Rungta and C. M. Caves, "Concurrence-based entanglement measures for isotropic states," Phys. Rev. A 67, 012307 (2003). https://doi.org/10.1103/PhysRevA.67.012307
  22. F. Mintert, M. Kus, and A. Buchleitner, "Concurrence of mixed bipartite quantum states in arbitrary dimensions," Phys. Rev. Lett. 92, 167902 (2004). https://doi.org/10.1103/PhysRevLett.92.167902
  23. F. Mintert, A. R. R. Carvalho, M. Kus, and A. Buchleitner, "Measures and dynamics of entangled states," 415, 207-259 (2005). https://doi.org/10.1016/j.physrep.2005.04.006
  24. K. Vollbrecht and R. F. Werner, "Entanglement measures under symmetry," Phys. Rev. A 64, 062307 (2001). https://doi.org/10.1103/PhysRevA.64.062307
  25. J. Bae, M. Tiersch, S. Sauer, F. de Melo, F. Mintert, B. Hiesmayr, and A. Buchleitner, "Detection and typicality of bound entangled states," Phys. Rev. A 80, 022317 (2009). https://doi.org/10.1103/PhysRevA.80.022317
  26. P. Horodecki, J. Smolin, B. M. Terhal, and A . V. Thapliyal, "Rank two bipartite bound entangled states do not exist," Theor. Comput. Sci. 292, 589-596 (2003). https://doi.org/10.1016/S0304-3975(01)00376-0
  27. L. Cattaneo and D. D'Alessandro, "Generalized concurrences do not provide necessary and sufficient conditions for entanglement detection," Quant. Inf. Com. 9, 66-180 (2009).
  28. S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F. Mintert, and A. Buchleitner, "Experimental determination of entanglement with a single measurement," Nat. 440, 1022-1024 (2006). https://doi.org/10.1038/nature04627