Link Availability of Terrestrial Free-space Optical Communication Systems in Korea

우리나라 옥외 무선광통신 시스템의 링크 가용성

  • Mai, Vuong V. (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ha, Dung T. (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Hoon (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • ;
  • ;
  • 김훈 (한국과학기술원 전기및전자공학부)
  • Received : 2018.01.12
  • Accepted : 2018.02.14
  • Published : 2018.04.25


We analyze the link availability of terrestrial free-space optical (FSO) communication systems in Korea. For this purpose, we utilize several theoretical models to calculate the power losses induced by absorption and scattering in the atmospheric channel, using five-year meteorological data for three major cities in Korea (Seoul, Busan, and Daejeon). Also, we estimate the power variations at the receiver caused by scintillation in the data. Those power losses and variations are used to estimate the availability of FSO links in the three cities. The results show that link availability is estimated to be over 95% in Daejeon for a 3.5-km FSO link, when the transmitter power and receiver diameter are greater than 10 dBm and 7 cm respectively. Slightly worse link availabilities are obtained for Busan and Seoul.


Supported by : 국방과학연구소


  1. M. A. Khalighi and M. Uysal, "Survey on free space optical communication: a communication theory perspective," IEEE Commun. Sur. Tut. 4, 2231-2258 (2014).
  2. H. Kaushal and G. Kaddoum, "Optical communication in space: challenges and mitigation techniques," IEEE Commun. Sur. 19, 57-96 (2017).
  3. H. Kim, Long-term evaluation and analysis of short-reach free-space optical link, Master Degree Thesis, Seogang University, Seoul (2004).
  4. E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, "High availability of hybrid wireless networks," Proc. SPIE 5465 (2004).
  5. I. Kim and E. Korevaar, "Availability of free-space optics (FSO) and hybrid FSO/RF systems," Proc. SPIE 4530, 84-95 (2001).
  6. A. Prokes, "Atmospheric effects on availability of free space optics systems," Opt. Eng. 48, 066001 1-10 (2009).
  7. F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. S. Muhammad, and G. Kandus, "Weather effects on hybrid FSO/RF communication link," IEEE J. Sel. Areas Commun. 27, 1687-1697 (2009).
  8. J. Turan and Ľ. Ovseník, "Experimental FSO network availability estimation using interactive fog condition monitoring," Proc. SPIE 10142, 1014223 1-16 (2016).
  9. A. J. Kshatriya, Y. B. Acharya, A. K. Aggarwal, and A. K. Majumdar, "Estimation of FSO link availability using climatic data," J. Opt. 45, 324-330 (2016).
  10. A. A. Basahel, M. R. Islam, S. A. Zabidi, and M. H. Habaebi, "Availability assessment of free-space-optics links with rain data from tropical climates," J. Lightwave Technol. 35, 4282-4288 (2017).
  11. I. Kim, B. McArthur, and E. Korevaar, "Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications," Proc. SPIE 4214, 26-37 (2001).
  12. M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. Le Minh, and E. Bentley, "Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions," J. Lightwave Technol. 31, 1720-1726 (2013).
  13. M. A. Esmail, H. Fathallah, and M. S. Alouini, "Outdoor FSO communications under fog: attenuation modeling and performance evaluation," IEEE Photon. J. 8, 1-22 (2016).
  14. S. Bendersky, N. S. Kopeika, and N. Blaunstein, "Atmospheric optical turbulence over land in Middle East coastal environments: prediction modeling and measurements," Appl. Opt. 43, 4070-4079 (2004).
  15. A. A. Farid and S. Hranilovic, "Outage capacity optimization for free-space optical links with pointing errors," J. Lightwave Technol. 25, 1702-1710 (2007).
  16. H. Yuksel, S. Milner, and C. Davis, "Aperture averaging for optimizing receiver design and system performance on free-space optical communication links," J. Opt. Netw. 4, 462-475 (2005).