Biomicrofluidics Laboratory

바이오 미세 유체 연구실

  • Published : 2018.04.30




  1. Quail, D.F. and Joyce, J.A., 2013. Microenvironmental regulation of tumor progression and metastasis. Nature medicine, 19(11), p.1423.
  2. Roussos, E.T., Condeelis, J.S. and Patsialou, A., 2011. Chemotaxis in cancer. Nature Reviews Cancer, 11(8), p.573.
  3. Lim, S., Nam, H. and Jeon, J.S., 2018. Chemotaxis model for human breast cancer cells based on signal-to-noise ratio. bioRxriv, doi:
  4. Funamoto, K., Zervantonakis, I.K., Liu, Y., Ochs, C.J., Kim, C. and Kamm, R.D., 2012. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab on a chip, 12(22), pp.4855-4863.
  5. Kim, S., Kim, W., Lim, S. and Jeon, J.S., 2017. Vasculature-on-a-chip for in vitro disease models. Bioengineering, 4(1), p.8.
  6. Bersini, S., Jeon, J.S., Dubini, G., Arrigoni, C., Chung, S., Charest, J.L., Moretti, M. and Kamm, R.D., 2014. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials, 35(8), pp.2454-2461.
  7. Jeon, J.S., Bersini, S., Gilardi, M., Dubini, G., Charest, J.L., Moretti, M. and Kamm, R.D., 2015. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proceedings of the National Academy of Sciences, 112(1), pp.214-219.
  8. Kim, W., Son, J. and Jeon, J.S., 2017. Visualization on the functional changes of endothelial cells due to apoptotic macrophage in atherosclerosis microenvironment. Journal of the Korean Society of Visualization, 15(3), pp.41-46.
  9. Baoge, L., Van Den Steen, E.L.K.E., Rimbaut, S., Philips, N., Witvrouw, E., Almqvist, K.F., Vanderstraeten, G. and Vanden Bossche, L.C., 2012. Treatment of skeletal muscle injury: a review. ISRN orthopedics, 2012.
  10. Gan, Z., 2016. Hypoxia in skeletal muscles: from physiology to gene expression. Musculoskeletal Regeneration, 2.
  11. Wan, C.R., Chung, S. and Kamm, R.D., 2011. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Annals of biomedical engineering, 39(6), pp.1840-1847.
  12. Kim, W., 2018. Recovery of damaged skeletal muscle cells in hypoxic and cyclic stretch conditions. KAIST, Master's thesis.
  13. Hou, Z., An, Y., Hjort, K., Hjort, K., Sandegren, L. and Wu, Z., 2014. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device. Lab on a Chip, 14(17), pp.3409-3418.
  14. Li, B., Qiu, Y., Glidle, A., McIlvenna, D., Luo, Q., Cooper, J., Shi, H.C. and Yin, H., 2014. Gradient microfluidics enables rapid bacterial growth inhibition testing. Analytical chemistry, 86(6), pp.3131-3137.
  15. Kim, K., Kim, S. and Jeon, J.S., 2018. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems. Sensors, 18(2), p.447.