Proton Conductivity of Niobium Phosphate Glass Thin Films

  • Kim, Dae Ho (Department of Advanced Engineering, Kumoh National Institute of Technology) ;
  • Park, Sung Bum (Department of Advanced Engineering, Kumoh National Institute of Technology) ;
  • Park, Yong-il (Department of Advanced Engineering, Kumoh National Institute of Technology)
  • Received : 2018.04.25
  • Accepted : 2018.04.30
  • Published : 2018.05.27


Among the fuel cell electrolyte candidates in the intermediate temperature range, glass materials show stable physical properties and are also expected to have higher ion conductivity than crystalline materials. In particular, phosphate glass has a high mobility of protons since such a structure maintains a hydrogen bond network that leads to high proton conductivity. Recently, defects like volatilization of phosphorus and destruction of the bonding structure have remarkably improved with introduction of cations, such as Zr4+ and Nb5+, into phosphate. In particular, niobium has proton conductivity on the surface because of higher surface acidity. It can also retain phosphorus content during heat treatment and improve chemical stability by bonding with phosphorus. In this study, we fabricate niobium phosphate glass thin films through sol-gel processing, and we report the chemical stability and electrical properties. The existence of the hydroxyl group in the phosphate is confirmed and found to be preserved at the intermediate temperature region of $150-450^{\circ}C$.


Supported by : Kumoh National Institute of Technology


  1. Brian C. H. Steele, and Angelika Heinzel, Nature., 414, 345 (2001).
  2. K.-D. Kreuer, Chem. Mater., 8, 610 (1996).
  3. P. Heo, K. Ito, A. Tomita, and T. Hibino, Angew. Chem. Int. Ed., 47, 7841 (2008).
  4. S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen, and T. Uda, Faraday Discuss., 134, 17 (2007).
  5. T. Norby, Solid State Ionics, 125, 1 (1999).
  6. Y. Abe, H. Hosono, and Y. Ohta, Phys. Rev. B: Condens. Matter Mater. Phys., 38, 10166 (1988).
  7. S. W. Martin, J. Am. Ceram. Soc., 74, 1767 (1991).
  8. J. E. Pemberton and L. Latifzadeh, Chem. Mater., 3, 195 (1991).
  9. F. F. Sene, J. R. Martinelli, and L. Gomes, J. Non-Cryst. Solids, 48, 30 (2004).
  10. F. F. Sene, K. R. Martinelli, and L. Gomes, J. Non-Cryst. Solids, 348, 63 (2004).
  11. S. V. Raman, J. Non-Cryst. Solids, 263&264, 395 (2000).
  12. Y. Abe, H. Shimakawa, and L. L Hench, J. Non-Cryst. Solids, 51, 357 (1982).
  13. Y. Abe, G. Li, M. Nogami, T. Kasuga, and L. L. Hench, J. Electrochem. Soc., 143, 144 (1996).
  14. T. Kasuga, M. Nakano, and M. Nogami, Adv. Mater., 14, 1490 (2002).<1490::AID-ADMA1490>3.0.CO;2-M
  15. K. Makita, M. Nogami, and Y. Abe, J. Mater. Sci. Lett., 16, 550 (1997).
  16. B. C. Lee, Y. J. Kwon, and B. K. Ryu, J. Korean Ceram. Soc., 39, 265 (2002).
  17. S. H. Lee, Master Thesis (in Korean), p.35, Kumoh National Institute of Technology, Gumi, Korea (2013).
  18. J.-E. Kim, S. B. Park and Y.-I. Park, J. Solid State Ionics, 216, 15 (2012).
  19. M. Nogami, K. Miyamura, and Y. Abe, J. Electro. Soc., 144, 2175 (1997).
  20. I. Nowak and M. Ziolek, Chem. Rev., 99, 2603 (1999).
  21. A. E. Jazouli, J. C. Viala, C. Parent, G. L. Flem, and P. Hagenmuller, J. Solid State Chem., 73, 433 (1988).
  22. A. E. Jazouli, R. Brochu, J. C. Viala, R. Ohazacuaga, C. Delmas, and G. L. Flem, Ann. Chim. (Cachan, Fr.), 7, 285 (1982).
  23. M. I. Abd El-Ati and A. A. Higazy, J. Mater. Sci., 35, 6175 (2000).
  24. W. storek, C. Peuker, and H. Geissler, J. Glass Sicence and Technology, 73, 373 (2000).
  25. E. N. Boulos and N. J. Kreidl: J. Can. Ceram. Soc., 41, 83 (1972).
  26. M. Aparicio and L.C. Klein, J. Sol-Gel Sci. Technol., 28, 199 (2003).
  27. V. Ramani, H. R. Kunz, and J. M. Fenton, J. Membr. Sci., 232, 31 (2004).
  28. M. Kotama, K. Nakanishi, H. Hosono, Y. Abe, and L. L. Hench, J. Electrochem. Soc., 138, 2928 (1991).
  29. Y. Abe, H. Hosono, O. Akita, and L. L. Hench J. Electro- chem. Soc., 141, L64 (1994).
  30. T. Uma and M. Nogami, J. Membrane Sci., 280, 744 (2006).
  31. B.C. Sales, J.U. Otaigbe, G.H. Beall, L.A. Boatner, and K.O. Ramey, J. Non-Cryst. Solids, 226, 287 (1998).
  32. S. Donze, L. Montagne, J. Grimblot, L. Gengembre, and G. Palavit, Phosphorus Research Bulletin, 10, 509 (1999).
  33. Richard K. Brow, J. Non-Cryst. Solids, 194, 267 (1996).
  34. S. Mizusaki, Y. Toyoda, K. Nakayama, Y. Nagata, T.C. Ozawa, Y. Noro, and H. Samata, J. Membr. Sci., 355, 960 (2009).
  35. S. Prakash, W. E. Mustain, S. H. Park, and P. A. Kohl, J. Power Sources, 175, 91 (2008).
  36. M. T. Colomer, Adv. Mater., 18, 371 (2006).