Effect of Black Rice (Oryza sativa L. indica) Ethanolic Extract on Tyrosinase Activity and Antioxidant Activity Related to Melanin Production

흑미의 주정 추출물이 melanin 생성과 관련된 tyrosinase 및 항산화 활성에 미치는 영향

  • Lee, Eunbeen (Department of Chemistry, Dong-Eui University) ;
  • Kim, Moon-Moo (Department of Applied Chemistry, Dong-Eui University)
  • Received : 2018.01.24
  • Accepted : 2018.03.14
  • Published : 2018.05.30


Hair graying is processed by loss of melanin production caused by the decrease of activity and number of melanocyte and the accumulation of hydrogen peroxide ($H_2O_2$) in the hair follicle with increase of age. The purpose of this study was to investigate the effect the Black oryzasativa ethanolic extract (BLEE) on the melanin production. In this study BLEE at $8{\mu}g/ml$ or more showed a significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reduction power. BLEE at $16{\mu}g/ml$ or more showed promoted tyrosinase activity and melanin production. In addition BLEE scavenged intracellular $H_2O_2$ in 2',7'-dichlorodihydrofluorescein (DCF) fluorescence assay in B16F1 cells. However, Western blot analyses displayed that BLEE decreased the expression level of catalase, but no effect on the expression level of tyrosinase, tyrosinase associated protein-1 (TRP-1), tyrosinase associated protein-2 (TRP-2) and microphthalmia-associated transcription factor (MITF) transcription factor involved in melanogenesis. Thus, the promotive effect of BLEE on melanin production is attributed to the increase of tyrosinase activity and the reduction of intracellular $H_2O_2$ level. In conclusion, BLEE played a key role in in promoting melanin production, which suggests that the BLEE could be applied as a potential functional material in the development of hair care cosmetics related to the promotion of melanin production for the growth of black hair.


Supported by : 한국연구재단


  1. Batrani, M., Salhotra, M., Kubba, A. and Agrawal, M. 2016. Imatinib mesylate-induced pseudoporphyria in a patient with chronic myeloid leukemia. Indian J. Dermatol. Venereol. Leprol. 82, 727.
  2. Choi, Y., Jeong, H. S. and Lee, J. 2007. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem. 103, 130-138.
  3. Gan, E. V., Haberman, H. and Menon, I. 1974. Oxidation of NADH by melanin and melanoproteins. Biochim. Biophys. Acta 370, 62-69.
  4. Glassman, S. J. 2011. Vitiligo, reactive oxygen species and T-cells. Clin. Sci. 120, 99-120.
  5. Han, K. H., Oh, J. C. and Ryu, C. H. 2004. A study on the optimization for preparation conditions of germinated brown rice gruel. Prev. Nutr. Food Sci. 33, 1735-1741.
  6. Hu, C., Zawistowski, J., Ling, W. and Kitts, D. D. 2003. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem. 51, 5271-5277.
  7. Ito, S. and Wakamatsu, K. 2008. Chemistry of mixed melanogenesis-pivotal roles of dopaquinone. Photochem. Photobiol. 84, 582-592.
  8. Kim, K. S., Kim, J. A., Eom, S. Y., Lee, S. H., Min, K. R. and Kim, Y. 2006. Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment Cell Res. 19, 90-98.
  9. Kim, S. R., Ahn, J. Y., Lee, H. Y. and Ha, T. Y. 2004. Various properties and phenolic acid contents of rices and rice brans with different milling fractions. Kor. J. Food Sci. Anim. Resour. 36, 930-936.
  10. Kim, S. E., Lee, C. M. and Kim, Y. C. 2017. Anti-melanogenic effect of oenothera laciniata methanol extract in melan-a cells. Toxicol. Res. 33, 55.
  11. Martinez-Gonzalez, M. C., del Pozo, J., Yebra-Pimentel, M. T., Perez, M., Almagro, M. and Fonseca, E. 2007. Livedoid skin reaction probably due to imatinib therapy. Ann. Pharmacother. 41, 148-152.
  12. Natale, C. A., Duperret, E. K., Zhang, J., Sadeghi, R., Dahal, A., O'Brien, K. T., Cookson, R., Winkler, J. D. and Ridky, T. W. 2016. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. eLife 5, e15104.
  13. Sarna, T., Burke, J. M., Korytowski, W., Rozanowska, M., Skumatz, C. M., Zareba, A. and Zareba, M. 2003. Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp. Eye Res. 76, 89-98.
  14. Soradech, S. 2016. Radical scavenging, antioxidant and melanogenesis stimulating activities of diiferent species of rice (Oryza sativa L.) extracts. TJPS. 40, 92-95.
  15. Varga, B., Gesztelyi, R., Bombicz, M., Haines, D., Szabo, A. M., Kemeny-Beke, A., Antal, M., Vecsernyes, M., Juhasz, B. and Tosaki, A. 2013. Protective effect of alpha-melanocyte-stimulating hormone (${\alpha}$-MSH) on the recovery of ischemia/ reperfusion (I/R)-induced retinal damage in a rat model. J. Mol. Neurosci. 50, 558-570.
  16. Waterman, P. G. and Mole, S. 1994 Analysis of phenolic plant metabolites: Blackwell Scientific.
  17. Wood, J. M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J., Hasse, S., Thornton, M. J., Shalbaf, M. and Paus, R. 2009. Senile hair graying: $H_2O_2$-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 23, 2065-2075.