DOI QR코드

DOI QR Code

Analytical approximation of optical force on a perfectly reflecting sphere: ray-optics regime

  • Kim, Sang Bok (Department of Environmental Machinery, Environment System Research Division Korea Institute of Machinery and Materials) ;
  • Song, Dong Keun (Department of Environmental Machinery, Environment System Research Division Korea Institute of Machinery and Materials)
  • Received : 2018.03.16
  • Accepted : 2018.03.23
  • Published : 2018.03.31

Abstract

The optical force on a perfectly reflecting sphere in a ray-optics regime is considered. With the assumption of geometric optics and a sphere smaller than the minimum waist of the illuminating beam, closed-form analytic expressions of the optical force are derived. Both axial and radial forces are expressed by a modified Bessel function of the first kind. The derived analytic expressions are compared to precise numerical computations of the exact optical force equations derived previously. In addition the error due to the small sphere assumption is estimated analytically.

Acknowledgement

Supported by : Korea Institute of Machinery and Materials

References

  1. Ashkin, A. (1970). Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 24, 156-159. https://doi.org/10.1103/PhysRevLett.24.156
  2. Ashkin, A., and Dziedzic, J. M. (1989). Internal cell manipulation using infrared laser traps. Proceeding of the National Academy of Science U S A, 86, 7914-7918. https://doi.org/10.1073/pnas.86.20.7914
  3. Chu, S., Bjorkholm, J. E., Ashkin, A., and Cable, A. (1986). Experimental observation of optically trapped atoms. Physiscal Review Letters, 57, 314-317. https://doi.org/10.1103/PhysRevLett.57.314
  4. Finer, J. T., Simmons, R. M., and Spudich, J. A. (1994). Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature, 368, 113-119. https://doi.org/10.1038/368113a0
  5. Gauthier, R. C., and Wallace, S. (1995). Optical levitation of spheres: Analytical development and numerical computations of the force equations. Journal of the Optical Society of America B, 12, 1680-1686. https://doi.org/10.1364/JOSAB.12.001680
  6. Gauthier, R. C. (1997). Optical trapping: A tool to assist optical machining. Optics & Laser Technology, 29, 389-399. https://doi.org/10.1016/S0030-3992(97)00038-8
  7. Hart, S. J., Terray, A., Arnold, J., and Leski, T. A. (2007). Sample concentration using optical chromatography. Optics Express, 15, 2724-2731. https://doi.org/10.1364/OE.15.002724
  8. Hebert, C. G., Terray, A., and Hart, S. J. (2011). Toward label-free optical fractionation of blood--optical force measurements of blood cells. Analytical Chemistry, 83, 5666-5672. https://doi.org/10.1021/ac200834u
  9. Kaneta, T., Ishidzu, Y., Mishima, N., and Imasaka, T. (1997). Theory of optical chromatography. Analytical Chemistry, 69, 2701-2710. https://doi.org/10.1021/ac970079z
  10. Kim, S. B., Kim, J. H., and Kim, S. S. (2006). Theoretical development of in situ optical particle separator: Cross-type optical chromatography. Applied Optics, 45, 6919-6924. https://doi.org/10.1364/AO.45.006919
  11. Kim, S. B., and Kim, S. S. (2006). Radiation forces on spheres in loosely focused gaussian beam: Ray-optics regime. Journal of the Optical Society of America B, 23, 897-903. https://doi.org/10.1364/JOSAB.23.000897
  12. Kim, S. B., Yoon, S. Y., Sung, H. J., and Kim, S. S. (2008). Cross-type optical particle separation in a microchannel. Analytical Chemistry, 80, 2628-2630. https://doi.org/10.1021/ac8000918
  13. Koehler, D. R. (1997). Optical actuation of micromechanical components. Journal of the Optical Society of America B, 14, 2197-2203. https://doi.org/10.1364/JOSAB.14.002197
  14. Kovac, J. R., and Voldman, J. (2007). Intuitive, image-based cell sorting using optofluidic cell sorting. Analytical Chemistry, 79, 9321-9330. https://doi.org/10.1021/ac071366y
  15. Lin, J., and Li, Y.-q. (2014). Optical trapping and rotation of airborne absorbing particles with a single focused laser beam. Applied Physics Letters, 104, 101909. https://doi.org/10.1063/1.4868542
  16. Lock, J. A. (2004). Calculation of the radiation trapping force for laser tweezers by use of generalized lorenz-mie theory. Ii. On-axis trapping force. Applied Optics, 43, 2545-2554. https://doi.org/10.1364/AO.43.002545
  17. Ozornek, M. H., Biefeld, P., and Jeyendran, R. S. (1998). Increased recovery of viable spermatozoa through oscillating centrifugation. Fertil Steril, 70, 712-714. https://doi.org/10.1016/S0015-0282(98)00271-4
  18. Paik, D. H., and Perkins, T. T. (2012). Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts. Methods in Molecular Biology, 875, 335-356.
  19. Pan, Y.-L., Hill, S. C., and Coleman, M. (2012). Photophoretic trapping of absorbing particles in air and measurement of their single-particle raman spectra. Optics Express, 20, 5325-5334. https://doi.org/10.1364/OE.20.005325
  20. Saleh, B. E. A., and Teich, M. C. (2007). Fundamentals of photonics. Wiley Interscience, Hoboken, N.J.
  21. Terray, A., Arnold, J., and Hart, S. J. (2005). Enhanced optical chromatography in a pdms microfluidic system. Optics Express, 13, 10406-10415. https://doi.org/10.1364/OPEX.13.010406
  22. Terray, A., Ladouceur, H. D., Hammond, M., and Hart, S. J. (2009). Numerical simulation of an optical chromatographic separator. Optics Express, 17, 2024-2032. https://doi.org/10.1364/OE.17.002024
  23. Terray, A., Hebert, C. G., and Hart, S. J. (2014). Optical chromatographic sample separation of hydrodynamically focused mixtures. Biomicrofluidics, 8, 064102. https://doi.org/10.1063/1.4901824
  24. Watson, G. N. (1995). A treatise on the theory of bessel functions. Cambridge University Press, Cambridge England ; New York.
  25. Zhong, M. C., Wei, X. B., Zhou, J. H., Wang, Z. Q., and Li, Y. M. (2013). Trapping red blood cells in living animals using optical tweezers. Nature Commun, 4, 1768. https://doi.org/10.1038/ncomms2786