DNA Metallization for Nanoelectronics

DNA 기반 금속 나노 와이어의 제작기술

  • Han, Gyeongyeop (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Jungkyu K. (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 한경엽 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이정규 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2018.04.30
  • Accepted : 2018.05.16
  • Published : 2018.06.10


DNA metallization has been emerged as a candidate for fabricating nanocircuits because of its simple process over a large area on a surface. With unique properties, DNA can be an excellent template to achieve molecular electronics. Thus, we introduced the preparation and properties of DNA metallization, and also suggested future directions in this review.


Supported by : 한국연구재단


  1. E. P. Gates, A. M. Dearden, and A. T. Woolley, DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry, Crit. Rev. Anal. Chem., 44, 354-370 (2014).
  2. Samsung Newsroom, (accessed April 27, 2018).
  3. P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297-302 (2006).
  4. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391, 775-778 (1998).
  5. Z. Deng and C. Mao, DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays, Nano Lett., 3, 1545-1548 (2003).
  6. X. Michalet, Stretching single-stranded DNA on a surface, Nano Lett., 1, 341-343 (2001).
  7. K. Keren, M. Krueger, R. Gilad, G. Ben-Joseph, U. Sivan, and E. Braun, Sequence-specific molecular lithography on single DNA molecules, Science, 297, 72-75 (2002).
  8. J. K. Lee, Y. H. Jung, R. M. Stoltenberg, J. B.-H. Tok, and Z. Bao, Synthesis of DNA-organic molecule-DNA triblock oligomers using the amide coupling reaction and their enzymatic amplification, J. Am. Chem. Soc., 130, 12854-12855 (2008).
  9. H. Yokota, J. Sunwoo, M. Sarikaya, G. V. D. Engh, and R. Abersold, Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy, Anal. Chem., 71, 4418-4422 (1999).
  10. H. Yokota, F. Johnson, H. Lu, R. M. Robinson, A. M. Belu, M. D. Garrison, B. D. Ratner, B. J. Trask, and D. L. Miller, A new method for straightening DNA molecules for optical restriction mapping, Nucleic Acids Res., 25, 1064-1070 (1997).
  11. G. Yu, A. Kushwaha, J. K. Lee, E. S. G. Shaqfeh, and Z. Bao, The shear flow processing of controlled DNA tethering and stretching for organic molecular electronics, ACS Nano, 5, 275-282 (2011).
  12. H. Nakao, H. Hayashi, T. Yoshino, S. Sugiyama, K. Otobe, and T. Ohtani, Development of novel polymer-coated substrates for straightening and fixing DNA, Nano Lett., 2, 475-479 (2002).
  13. A. Filoramo, DNA metallization processes and nanoelectronics. In: X. Baillin, C. Joachim, and G. Poupon (eds.), Nanopackaging: from Nanomaterials to the Atomic Scale, p. 17-32, Springer-Verlag, NY, USA (2015).
  14. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires, Science, 301, 1882-1884 (2003).
  15. O. Harnack, W. E. Ford, A. Yasuda, and J. M. Wessels, Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors, Nano Lett., 2, 919-923 (2002).
  16. A. Ongaro, F. Griffin, P. Beecher, L. Nagle, D. Iacopino, A. Quinn, G. Redmond, and D. Fitzmaurice, DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide substrate, Chem. Mater., 17, 1959-1964 (2005).
  17. M. Mertig, L. C. Ciacchi, R. Seidel, W. Pompe, and A. D. Vita, DNA as a selective metallization template, Nano Lett., 2, 841-844 (2002).
  18. J. Lund, J. Dong, Z. Deng, C. Mao, and B. A. Parviz, Electrical conduction in 7 nm wires constructed on ${\lambda}$-DNA, Nanotechnology, 17, 2752-2757 (2006).
  19. J. Richter, M. Mertig, and W. Pompe, Construction of highly con- ductive nanowires on a DNA template, Appl. Phys. Lett., 78, 536-538 (2001).
  20. K. Nguyen, M. Monteverde, A. Filoramo, L. Goux-Capes, S. Lyonnais, P. Jegou, P. Viel, M. Goffman, and J. Bourgoin, Synthesis of thin and highly conductive DNA-based palladium nanowires, Adv. Mater., 20, 1099-1104 (2008).
  21. C. F. Monson and A. T. Woolley, DNA-templated construction of copper nanowires, Nano Lett., 3, 359-363 (2003).
  22. D. Aherne, A. Satti, and D. Fitzmaurice, Diameter-dependent evo- lution of failure current density of highly conducting DNA-tem- plated gold nanowires, Nanotechnology, 18, 125205-125210 (2007).
  23. H. A. Becerril, P. Ludtke, B. M. Willardson, and A. T. Woolley, DNA-templated nickel nanostructures and protein assemblies, Langmuir, 22, 10140-10144 (2006).
  24. Q. Gu, C. Cheng, and D. T. Haynie, Cobalt metallization of DNA: toward magnetic nanowires, Nanotechnology, 16, 1358-1363 (2005).
  25. B. Uprety, J. Jensen, B. R. Aryal, R. C. Davis, A. T. Woolley, and J. N. Harb, Directional growth of DNA-functionalized nanorods to enable continuous, site-specific metallization of DNA origami templates. Langmuir, 33, 10143-10152 (2017).
  26. J. Choi, H. Chen, F. Li, L. Yang, S. S. Kim, R. R. Naik, P. D. Ye, and J. H. Choi, Nanomanufacturing of 2D transition metal dichalcogenide materials using self-assembled DNA nanotubes, Small, 11, 5520-5527 (2015).
  27. J. K. Lee, M. R. Kim, I. S. Choi, Y. H. Jung, and Yang-Gyun Kim, DNA-templated metallization for formation of porous and hollow silver-shells, Bull. Korean Chem. Soc., 34, 986-988 (2013).
  28. Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, Three-dimensional structures self-assembled from DNA bricks, Science, 338, 1177-1183 (2012).
  29. S. Helmi, C. Ziegler, D. J. Kauert, and R. Seidel, Shape-controlled synthesis of gold nanostructures using DNA origami molds, Nano Lett., 14, 6693-6698 (2014).