Synthesis of P3HT-b-P4VP via Anionic Polymerization and its Physical Properties in Various Solvents

음이온 중합법 기반 P3HT-b-P4VP 블록공중합체 정밀 합성 및 이의 용매에 따른 물리적 특성 변화 연구

  • Hwang, Sung Yeon (Advanced Materials and Chemical Engineering, University of Science and Technology (UST)) ;
  • Park, Jeyoung (Advanced Materials and Chemical Engineering, University of Science and Technology (UST)) ;
  • Oh, Dongyeop X. (Advanced Materials and Chemical Engineering, University of Science and Technology (UST))
  • 황성연 (과학기술연합대학원대학교) ;
  • 박제영 (과학기술연합대학원대학교) ;
  • 오동엽 (과학기술연합대학원대학교)
  • Received : 2018.03.20
  • Accepted : 2018.04.17
  • Published : 2018.06.10


In general, the synthesis of poly(3-hexylthiophene)(P3HT)-based block copolymers requires at least a 4-5 step process. To control the molecular weight, molecular weight distribution, and block ratio, the reaction conversion and time should be monitored. In addition, the reaction scale usually limited to several mg to g was difficult to increase due to the limitations of living radical polymerizations. In this study, we synthesized P3HT-b-poly(4-vinylprydine) (P3HT-b-P4VP) with a final product quantity of > 19 g via a 2-step synthetic method with an anionic polymerization. In this method, the molecular weight and molecular weight distribution of P3HT-b-P4VP can be well controlled without monitoring the reaction conversion. We also studied physical properties of P3HT-b-P4VP depending on different solvent systems, which were investigated by UV-vis spectroscopy, atomic force microscopy, and ultraviolet photoelectron spectroscopy.


Supported by : 한국화학연구원


  1. J. K. Kim, S. Y. Yang, Y. Lee, and Y. Kim, Functional nanomaterials based on block copolymer self-assembly, Prog. Polym. Sci., 35, 1325-1349 (2010).
  2. H. C. Moon, A. Anthonysamy, J. K. Kim, and A. Hirao, Facile synthetic route for well-defined poly(3-hexylthiophene)-block-poly(methyl methacrylate) copolymer by anionic coupling reaction, Macromolecules, 44, 1894-1899 (2011).
  3. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 22, E135-E138 (2010).
  4. D. Qian, L. Ye, M. Zhang, Y. Liang, L. Li, Y. Huang, X. Guo, S. Zhang, Z. A. Tan, and J. Hou, Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state, Macromolecules, 45, 9611-9617 (2012).
  5. M. Jang, Y. C. Yu, H. Jeon, J. H. Youk, and H. Yang, Air-processable silane-coupled polymers to modify a dielectric for solution-processed organic semiconductors, ACS Appl. Mater. Interfaces, 7, 5274-5280 (2015).
  6. R. D. McCullough, The chemistry of conducting polythiophenes, Adv. Mater., 10, 93-116 (1998).<93::AID-ADMA93>3.0.CO;2-F
  7. D. Lee, D. H. Sin, S. W. Kim, H. Lee, H. R. Byun, J. Mun, W. Sung, B. Kang, D. G. Kim, H. Ko, S. W. Song, M. S. Jeong, J. Rho, and K. Cho, Singlet exciton delocalization in gold nanoparticle-tethered poly(3-hexylthiophene) nanofibers with enhanced intrachain ordering, Macromolecules, 50, 8487-8496 (2017).
  8. D. Lee, J. Lee, K.-H. Song, H. Rhee, and D.-J. Jang, Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles, Phys. Chem. Chem. Phys., 18, 2087-2096 (2016).
  9. H.-J. Kim, Y. J. Lee, S. S. Hwang, D. H. Choi, H. Yang, and K.-Y. Baek, Synthesis of multiarmed poly(3-hexyl thiophene) star polymer with microgel core by GRIM and ATRP methods, J. Polym. Sci. A, 49, 4221-4226 (2011).
  10. C. R. Craley, R. Zhang, T. Kowalewski, R. D. McCullough, and M. C. Stefan, Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer, Macromol. Rapid Commun., 30, 11-16 (2009).
  11. M. C. Iovu, R. Zhang, J. R. Cooper, D. M. Smilgies, A. E. Javier, E. E. Sheina, T. Kowalewski, and R. D. McCullough, Conducting block copolymers of regioregular poly(3-hexylthiophene) and poly (methacrylates): Electronic materials with variable conductivities and degrees of interfibrillar order, Macromol. Rapid Commun., 28, 1816-1824 (2007).
  12. M. C. Iovu, C. R. Craley, M. Jeffries-El, A. B. Krankowski, R. Zhang, T. Kowalewski, and R. D. McCullough, Conducting regioregular polythiophene block copolymer nanofibrils synthesized by reversible addition fragmentation chain transfer polymerization (RAFT) and nitroxide mediated polymerization (NMP), Macromolecules, 40, 4733-4735 (2007).
  13. K. Palaniappan, N. Hundt, P. Sista, H. Nguyen, J. Hao, M. P. Bhatt, Y.-Y. Han, E. A. Schmiedel, E. E. Sheina, M. C. Biewer, and M. C. Stefan, Block copolymer containing poly(3-hexylthiophene) and poly(4-vinylpyridine): Synthesis and its interaction with CDSE quantum dots for hybrid organic applications, J. Polym. Sci. A, 49, 1802-1808 (2011).
  14. M. R. Kern and S. G. Boyes, RAFT polymerization kinetics and polymer characterization of P3HT rod-coil block copolymers, J. Polym. Sci. A, 52, 3575-3585 (2014).
  15. R. H. Lohwasser and M. Thelakkat, Synthesis of amphiphilic rod-coil P3HT-b-P4VP carrying a long conjugated block using NMRP and click chemistry, Macromolecules, 45, 3070-3077 (2012).
  16. N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Leveque, J.-N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, and R. Mezzenga, A new supramolecular route for using rod-coil block copolymers in photovoltaic applications, Adv. Mater., 22, 763-768 (2010).
  17. V. Gernigon, P. Leveque, F. Richard, N. Leclerc, C. Brochon, C. H. Braun, S. Ludwigs, D. V. Anokhin, D. A. Ivanov, G. Hadziioannou, and T. Heiser, Microstructure and optoelectronic properties of P3HT-b-P4VP/PCBM blends: Impact of PCBM on the copolymer self-assembly, Macromolecules, 46, 8824-8831 (2013).
  18. M. Kamigaito, T. Ando, and M. Sawamoto, Metal-catalyzed living radical polymerization, Chem. Rev., 101, 3689-3746 (2001).
  19. K. Matyjaszewski, Atom transfer radical polymerization (ATRP): Current status and future perspectives, Macromolecules, 45, 4015-4039 (2012).
  20. C.-A. Dai, W.-C. Yen, Y.-H. Lee, C.-C. Ho, and W.-F. Su, Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior, J. Am. Chem. Soc., 129, 11036-11038 (2007).
  21. M. Lee, H. Jeon, M. Jang, and H. Yang, A physicochemical ap- proach toward extending conjugation and the ordering of sol- ution-processable semiconducting polymers, ACS Appl. Mater. Interfaces, 8, 4819-4827 (2016).
  22. S. Lee, H. Jeon, M. Jang, K.-Y. Baek, and H. Yang, Tunable solubility parameter of poly(3-hexyl thiophene) with hydrophobic side-chains to achieve rubbery conjugated films, ACS Appl. Mater. Interfaces, 7, 1290-1297 (2015).
  23. Y. J. Lee, S. H. Kim, H. Yang, M. Jang, S. S. Hwang, H. S. Lee, and K.-Y. Baek, Vertical conducting nanodomains self-assembled from poly(3-hexyl thiophene)-based diblock copolymer thin films, J. Phys. Chem. C, 115, 4228-4234 (2011).
  24. J. Kim, S.-Y. Choi, K. M. Kim, D. H. Go, H. J. Jeon, J. Y. Lee, H. S. Park, C. H. Lee, and H. M. Park, An efficient method for synthesis of PEO-based macromonomer and macroinitiator, Macromol. Res., 15, 337-342 (2007).
  25. N.-G. Kang, M. Changez, and J.-S. Lee, Living anionic polymerization of the amphiphilic monomer 2-(4-vinylphenyl) pyridine, Macromolecules, 40, 8553-8559 (2007).