The Effect of Biomass Torrefaction on the Catalytic Pyrolysis of Korean Cork Oak

굴참나무 촉매열분해에 바이오매스 반탄화가 미치는 영향

  • Lee, Ji Young (Korea National Industrial Convergence Center, Korea Institute of Industrial Technology) ;
  • Lee, Hyung Won (School of Environmental Engineering, University of Seoul) ;
  • Kim, Young-Min (School of Environmental Engineering, University of Seoul) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • 이지영 (한국생산기술연구원 국가산업융합지원센터) ;
  • 이형원 (서울시립대학교 환경공학부) ;
  • 김영민 (서울시립대학교 환경공학부) ;
  • 박영권 (서울시립대학교 환경공학부)
  • Received : 2018.05.02
  • Accepted : 2018.05.05
  • Published : 2018.06.10


In this study, the effect of biomass torrefaction on the thermal and catalytic pyrolysis of cork oak was investigated. The thermal and catalytic pyrolysis behavior of cork oak (CO) and torrefied CO (TCO) were evaluated by comparing their thermogravimetric (TG) analysis results and product distributions of bio-oils obtained from the fast pyrolysis using a fixed bed reactor. TG and differential TG (DTG) curves of CO and TCO revealed that the elimination amount of hemicellulose in CO increased by applying the higher torrefaction temperature and longer torrefaction time. CO torrefaction also decreased the oil yield but increased that of solid char during the pyrolysis because the contents of cellulose and lignin in CO increased due to the elimination of hemicellulose during torrefaction. Selectivities of the levoglucosan and phenolics in TCO pyrolysis oil were higher than those in CO pyrolysis oil. The content of aromatic hydrocarbons in bio-oil increased by applying the catalytic pyrolysis of CO and TCO over HZSM-5 ($SiO_2/Al_2O_3=30$). Compared to CO, TCO showed the higher efficiency on the formation of aromatic hydrocarbons via the catalytic pyrolysis over HZSM-5 and the efficiency was maximized by applying the higher torrefaction and catalytic pyrolysis reaction temperatures of 280 and $600^{\circ}C$, respectively.


Supported by : National Research Foundation of Korea (NRF)


  1. J. S. Cha, S. H. Park, S. C. Jung, C. Ryu, J. K. Jeon, M. C. Shin, and Y. K. Park, Production and utilization of biochar: A review, J. Ind. Eng. Chem., 40, 1-15 (2016).
  2. H. W. Lee, Y. M. Kim, J. Jae, J. K. Jeon, S. C. Jung, S. C. Kim, and Y. K. Park, Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene, Energy Convers. Manag., 129, 81-88 (2016).
  3. J. Corton, I. S. Donnison, M. Patel, L. Buhle, E. Hodgson, M. Wachendorf, A. Bridgwater, G. Allison, and M. D. Fraser, Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes, Appl. Energy, 177, 852-862 (2016).
  4. H. Shafaghat, P. S. Rezaei, D. Ro, J. Jae, B. S. Kim, S. C. Jung, B. H. Sung, and Y. K. Park, In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer, J. Ind. Eng. Chem., 54, 447-453 (2017).
  5. H. Lee, Y. M. Kim, I. G. Lee, J. K. Jeon, S. C. Jung, J. D. Chung, W. G. Choi, and Y. K. Park, Recent advances in the catalytic hydrodeoxygenation of bio-oil, Korean J. Chem. Eng., 33(2), 3299-3315 (2016).
  6. H. Kim, H. Shafaghat, J. K. Kim, B. S. Kang, J. K. Jeon, S. C. Jung, I. G. Lee, and Y. K. Park, Stabilization of bio-oil over a low cost dolomite catalyst, Korean J. Chem. Eng., 35(4), 922-925 (2018).
  7. J. Meng, J. Park, D. Tilotta, and S. Park, The effect of torrefaction on the chemistry of fast pyrolysis bio-oil, Bioresour. Technol., 111, 439-446 (2012).
  8. S. Sadaka and S. Negi, Improvements of biomass physical and thermochemical characteristics via torrefaction process, Environ. Prog. Sustain. Energy, 28, 427-434 (2009).
  9. Y. M. Kim, J. Jae, B. S. Kim, Y. Hong, S. C. Jung, and Y. K. Park, Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts, Energy Convers. Manag., 149, 966-973 (2017).
  10. S. Neupane, S. Adhikari, Z. Wang, A. J. Ragauskas, and Y. Pu, Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis, Green Chem., 17, 2406-2417 (2015).
  11. D. Chen, Y. Li, M. Deng, J. Wang, M. Chen, B. Yan, and Q. Yuan, Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood, Bioresour. Technol., 214, 615-622 (2016).
  12. L. E. Arteaga-Perez, O. G. Capiro, R. Romero, A. Delgado, P. Olivera, F. Ronsse, and R. Jimenez, In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts, Energy, 128, 701-712 (2017).
  13. V. Srinivasan, S. Adhikari, S. A. Chattanathan, M. Tu, and S. Park, Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites, BioEnergy Res., 7, 867-875 (2014).
  14. S. Adhikari, V. Srinivasan, and O. Fasina, Catalytic pyrolysis of raw and thermally treated lignin using different acidic zeolites, Energy Fuels, 28, 4532-4538 (2014).
  15. R. Mahadevan, S. Adhikari, R. Shakya, K. Wang, D. C. Dayton, M. Li, Y. Pu, and A. J. Ragauskas, Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis, J. Anal. Appl. Pyrolysis, 122, 95-105 (2016).
  16. M. Atienza-Martinez, I. Rubio, I. Fonts, J. Ceamanos, and G. Gea, Effect of torrefaction on the catalytic post-treatment of sewage sludge pyrolysis vapors using ${\gamma}-Al_2O_3$, Chem. Eng. J., 308, 264-274 (2017).
  17. H. W. Lee, Y. M. Kim, J. Jae, B. H. Sung, S. C. Jung, S. C. Kim, J. K. Jeon, and Y. K. Park, Catalytic pyrolysis of lignin using a two-stage fixed bed reactor comprised of in-situ natural zeolite and ex-situ HZSM-5, J. Anal. Appl. Pyrolysis, 122, 282-288 (2016).
  18. Y. M. Kim, B. S. Kim, K. S. Chea, T. S. Jo, S. Kim, and Y. K. Park, Ex-situ catalytic pyrolysis of Korean native oak tree over microporous zeolites, Appl. Chem. Eng., 27(4), 407-414 (2016).
  19. E. Barta-Rajnai, L. Wang, Z. Sebestyen, Z. Barta, R. Khalil, O. Skreiberg, M. Gronli, E. Jakab, and Z. Czegeny, Effect of temperature and duration of torrefaction on the thermal behavior of stem wood, bark, and stump of spruce, Energy Procedia, 105, 551-556 (2017).
  20. A. Zheng, Z. Zhao, S. Chang, Z. Huang, X. Wang, F. He, and A. Li, Effect of torrefaction on structure and fast pyrolysis behavior of corncobs, Bioresour. Technol., 128, 370-377 (2013).
  21. A. Zheng, Z. Zhao, Z. Huang, K. Zhao, G. Wei, X. Wang, F. He, and H. Li, Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity, Energy Fuel, 28, 5804-5811 (2014).