DOI QR코드

DOI QR Code

Large-Scale Graphene Production Techniques for Practical Applications

  • Bae, Sukang (Applied Quantum Composites Research Center, Korea Institute of Science and Technology) ;
  • Lee, Seoung-Ki (Applied Quantum Composites Research Center, Korea Institute of Science and Technology) ;
  • Park, Min (Photoelectronic Hybrid Research Center, Korea Institute of Science and Technology)
  • Received : 2018.07.09
  • Accepted : 2018.09.12
  • Published : 2018.09.30

Abstract

Many studies have been conducted on large-scale graphene synthesis by chemical vapor deposition. Furthermore, numerous researchers have attempted to develop processes that can continuously fabricate uniform and high-quality graphene. To compete with other types of carbon materials (carbon black, carbon fiber, carbon nanotubes, and so on), various factors, such as price, mass manufacturing capability, and quality, are crucial. Thus, in this study, we examine various large-scale graphene production methods focusing on cost competitiveness and productivity improvements for applications in various fields.

Acknowledgement

Supported by : Korea Institute of Science and Technology (KIST)

References

  1. S. -H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Ozyilmaz, and J. -H. Ahn, ACS Nano 7, 3130 (2013). https://doi.org/10.1021/nn400848j
  2. M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly, Nano Lett. 11, 4631 (2011). https://doi.org/10.1021/nl202131q
  3. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Haytazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Appl. Phys. Lett. 102, 023112 (2013). https://doi.org/10.1063/1.4776707
  4. T. Yamada, M. Ishihara, J. Kim, M. Hasegawa, and S. Iijima, Carbon 50, 2615 (2012). https://doi.org/10.1016/j.carbon.2012.02.020
  5. G. Zhong, X. Wu, L. D'Arsie, K. B. K. Teo, N. L. Rupesinghe, A. Jouvray, and J. Robertson, Appl. Phys. Lett. 109, 193103 (2016). https://doi.org/10.1063/1.4967010
  6. J. Ryu, Y. Kim, D. Won, N. Kim, J. S. Park, E. -K. Lee, D. Cho, S. -P. Cho, S. J. Kim, G. H. Ryu, H. -A. S. Shin, Z. Lee, B. H. Hong, and S. Cho, ACS Nano 8, 950 (2014). https://doi.org/10.1021/nn405754d
  7. S. Kang, K. Lim, H. Park, J. B. Park, S. C. Park, S. -P. Cho, K. Kang, and B. H. Hong, ACS Appl. Mater. Interfaces 10, 1033 (2018). https://doi.org/10.1021/acsami.7b13741
  8. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat. Mater. 9, 430 (2010). https://doi.org/10.1038/nmat2711
  9. G. Zhou, G. Pan, L. Wei, T. Li, and F. Zhang, RSC Adv. 6, 93855 (2016). https://doi.org/10.1039/C6RA20496A
  10. A. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol, ACS Nano 4, 3839 (2010). https://doi.org/10.1021/nn100508g
  11. S. -J. Kwon, T. -H. Han, T. Y. Ko, N. Li, Y. Kim, D. J. Kim, S. -H. Bae, Y. Yang, B. H. Hong, K. S. Kim, S. Ryu, and T. -W. Lee, Sci. Rep. 9, 2037 (2018).
  12. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg. J. Hone, P. Kim, and H. L. Stomer, Solid State Commun. 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  13. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  14. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008). https://doi.org/10.1021/nl0731872
  15. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008). https://doi.org/10.1126/science.1157996
  16. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater. 22, 3906 (2010). https://doi.org/10.1002/adma.201001068
  17. R. E. Peierls, Ann. I. H. Poincare 5, 177 (1935).
  18. L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).
  19. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  20. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  21. D. Shin, S. Bae, C. Yan, J. Kang, J. Ryu, J. -H. Ahn, and B. H. Hong, Carbon Lett. 1, 1 (2012).
  22. S. Bae, S. J. Kim, D. Shin, J. -H. Ahn, and B. H. Hong, Phys. Scr. T146, 014024 (2012). https://doi.org/10.1088/0031-8949/2012/T146/014024
  23. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotech. 3, 270 (2008). https://doi.org/10.1038/nnano.2008.83
  24. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature 448, 457 (2007). https://doi.org/10.1038/nature06016
  25. S. Stankovich, D. A. Dikin, G. H. B. Dommett,K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006). https://doi.org/10.1038/nature04969
  26. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotech. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  27. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi, and B. H. Hong, Nature 457, 706 (2009). https://doi.org/10.1038/nature07719
  28. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovi, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009). https://doi.org/10.1021/nl801827v
  29. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  30. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009). https://doi.org/10.1021/nl902623y
  31. P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B 80, 4759 (2009).
  32. H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, and S. Mizuno, ACS Nano 4, 7407 (2010). https://doi.org/10.1021/nn102519b
  33. J. Coraux, A. T. N'Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. -J. M. Heringdorf, R. V. Gastel, B. Poelsema, and T. Michely, New J. Phys. 11, 023006 (2009). https://doi.org/10.1088/1367-2630/11/2/023006
  34. P. W. Sutter, J. -I. Flege, and E. A. Sutter, Nat. Mater. 7, 406 (2008). https://doi.org/10.1038/nmat2166
  35. T. Oznuluer, E. Pince, E. O. Polat, O. Balci, O. Salihoglu, and C. Kocabas, Appl. Phys. Lett. 98, 183101 (2011). https://doi.org/10.1063/1.3584006
  36. X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, and Z. Liu, J. Phys. Chem. C 115, 11976 (2011). https://doi.org/10.1021/jp202933u
  37. B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Nat. Commun. 2, 522 (2011). https://doi.org/10.1038/ncomms1539
  38. Q. Yu, J. Lian, S. Siriponglert, Y. P. Chen, and S. S. Pei, Appl. Phys. Lett. 93, 113103 (2008). https://doi.org/10.1063/1.2982585
  39. X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268 (2009). https://doi.org/10.1021/nl902515k
  40. R. Vitchev, A. Malesevic, R. H. Petrov, R. Kemps, M. Mertens, A. Vanhulsel, and C. V. Haesendonck, Nanotechnology 21, 095602 (2010). https://doi.org/10.1088/0957-4484/21/9/095602
  41. Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung, M. Kim, and C. -Y. Park, Appl. Phys. Lett. 98, 263106 (2011). https://doi.org/10.1063/1.3605560
  42. J. -K. Lee, H. -J. Chung, J. Heo, S. Seo, I. H. Cho, H. -I. Kwon, and J. -H. Lee, Appl. Phys. Lett. 98, 193504 (2011). https://doi.org/10.1063/1.3589120
  43. J. Kim, M. Ishiharta, Y. Koga, K. Tsugawa, M. Hasegawa, and S. Iijima, Appl. Phys. Lett. 98, 091502 (2011). https://doi.org/10.1063/1.3561747
  44. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Ozyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotech. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  45. T. Hesjedal, Appl. Phys. Lett. 98, 133106 (2011). https://doi.org/10.1063/1.3573866
  46. E. S. Polsen, D. Q. Mcnerny, B. Viswanath, S. W. Pattinson, and A. J. Hart, Sci. Rep. 5, 10257 (2015). https://doi.org/10.1038/srep10257