Gapped Nearly Free-Standing Graphene on an SiC(0001) Substrate Induced by Manganese Atoms

  • Hwang, Jinwoong (Department of Physics, Pusan National University) ;
  • Lee, Ji-Eun (Department of Physics, Pusan National University) ;
  • Kang, Minhee (Department of Physics, Pusan National University) ;
  • Park, Byeong-Gyu (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Denlinger, Jonathan (Advanced Light Source, Lawrence Berkeley National Laboratory) ;
  • Mo, Sung-Kwan (Advanced Light Source, Lawrence Berkeley National Laboratory) ;
  • Hwang, Choongyu (Department of Physics, Pusan National University)
  • Received : 2018.09.17
  • Accepted : 2018.09.29
  • Published : 2018.09.30


The electron band structure of manganese-adsorbed graphene on an SiC(0001) substrate has been studied using angle-resolved photoemission spectroscopy. Upon introducing manganese atoms, the conduction band of graphene, that is observed in pristine graphene indicating intrinsic electron-doping by the substrate, completely disappears and the valence band maximum is observed at 0.4 eV below Fermi energy. At the same time, the slope of the valence band decreases by the presence of manganese atoms, approaching the electron band structure calculated using the local density approximation method. The former provides experimental evidence of the formation of nearly free-standing graphene on an SiC substrate, concomitant with a metal-to-insulator transition. The latter suggests that its electronic correlations are efficiently screened, suggesting that the dielectric property of the substrate is modified by manganese atoms and indicating that electronic correlations in grpahene can also be tuned by foreign atoms. These results pave the way for promising device application using graphene that is semiconducting and charge neutral.


Supported by : Pusan National University


  1. J. Hwang, H. Hwang, M. J. Kim, H. Ryu, J. E. Lee, Q. Zhou, S. K. Mo, J. Lee, A. Lanzara, and C. Hwang, Nanoscale 9, 11498 (2017).
  2. D. Usachov, A. Fedorov, M. M. Otrokov, A. Chikina, O Vilkov, A. Petukhov, A. G. Rybkin, Y. M. Koroteev, E. V. Chulkov, V. K. Adamchuk, A. Gr uneis, C. Laubschat, and D. V. Vyalikh, Nano Lett.15, 2396 (2015).
  3. S. M. Kim and K. K. Kim, ASCT 24, 268 (2015).
  4. A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
  5. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. 103, 246804 (2009).
  6. A. Varykhalov, J. Sanchez-Barriga, D. Marchenko, P. Hlawenka, P. S. Mandal, and O. Rader, Nat. Commun. 6, 7610 (2015).
  7. A. M. Shikin, A. G. Rybkin, D. Marchenko, A. A. Rybkina, M. R. Sholz, O. Rader, and A. Varyhalov, New J. Phys. 15, 013016 (2013).
  8. I. Gierz, T. Suzuki, R. T. Weitz, D. S. Lee, B. Krauss, C. Riedl, U. Starke, H. Hochst, J. H. Smet, C. R. Ast, and K. Kern, Phys. Rev. B 81, 235408 (2010).
  9. K. V. Emtsev, A. A. Zakharov, C. Coletti, S. Forti, and U. Starke, Phys. Rev. B 84, 125423 (2011).
  10. H. Kim, O. Dugerjav, A. Lkhagvasuren, and J. M. Seo, J. Phys. D: Appl. Phys. 49, 135307 (2016).
  11. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).
  12. C. Hwang, J. Hwang, J. E. Lee, J. Denlinger, and S. K. Mo, Appl. Phys. Lett. 111, 231603 (2017).
  13. S. Kim, J. Ihm, H. J. Choi, and Y. W. Son, Phys. Rev. Lett. 100, 176802 (2008).
  14. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
  16. L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, Nature 467, 305 (2010).
  17. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
  18. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
  19. S. Sung, S. H. Lee, P. Lee, J. Kim, H. Park, M. Ryu, N. Kim, C. Hwang, S. H. Jhi, and J. Chung, RSC Adv. 6, 9106 (2016).
  20. M. Ryu, P. Lee, J. Kim, H. Park, and J. Chung, Nanotechnol. 27, 31LT03 (2016).
  21. J. Kim, P. Lee, M. Ryu, H. Park, and J. Chung, RSC Adv. 6, 114219 (2016).
  22. T. Gao, Y. Gao, C. Chang, Y. Chen, M. Liu, S. Xie, K. He, X. Ma, Y. Zhang, and Z. Liu, ACS Nano 6, 6562 (2012).
  23. C. Hwang, C. H. Park, D. A. Siegel, A. V. Fedorov, S. G. Louie, and A. Lanzara, Phys. Rev. B 84, 125422 (2011).
  24. T. Seyller, K. V. Emtsev, F. Speck, K. Y. Gao, and L. Ley, Appl. Phys. Lett. 88, 242103 (2006).
  25. J. Hwang and C. Hwang, New J.Phys.18, 043005 (2016).
  26. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126805 (2007).
  27. D. A. Siegel, C. H. Park, C. Hwang, J. Deslipppe, A. V. Fedorov, S. G. Louie, and A. Lanzara, Proc. Natl. Acad. Sci. USA 108, 11365 (2011).
  28. C. Hwang, D. A. Siegel, S. K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, Sci. Rep. 2, 590 (2012).
  29. D. A. Siegel, C. Hwang, A. V. Fedorov, and A. Lanzara, New J. Phys. 14, 095006 (2012).
  30. I. I. Klimovskikh, S. S. Tsirkin, A. G. Rybkin, A. A. Rybkina, M. V. Filianina, E. V. Zhizhin, E. V. Chulkov, and A. M. Shikin, Phys. Rev. B 90, 235431 (2014).
  31. J. Hwang, K. Kyoo, H. Ryu, J. Kim, J. E. Lee, S. Kim, M. Kang, B. G. Park, A. Lanzara, J. Chung, S.-K. Mo, J. Denlinger, B. I. Min, and C. Hwang, Nano Lett. 18, 3661 (2018)
  32. J. Ren, H. Guo, J. Pan, Y. F. Zhang, Y. Yang, X. Wu, S. Du, M. Ouyang, and H.-J. Gao, Phys. Rev. Lett. 119, 176806 (2017).
  33. H. P. Bonzel, Phys. Status Solidi B 20, 493 (1967).
  34. J. Ristein, S. Mammadov, and Th. Seyller, Phys. Rev. Lett. 108, 246104 (2012).