DOI QR코드

DOI QR Code

Structural and Optical Properties of GaN Nanowires Formed on Si(111)

  • Han, Sangmoon (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Choi, Ilgyu (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Song, Jihoon (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Lee, Cheul-Ro (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Cho, Il-Wook (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Kim, Jin Soo (Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Chonbuk National University)
  • Received : 2018.07.16
  • Accepted : 2018.09.21
  • Published : 2018.09.30

Abstract

We discuss the structural and optical characteristics of GaN nanowires (NWs) grown on Si(111) substrates by a plasma-assisted molecular-beam epitaxy. The GaN NWs with high crystal quality were formed by adopting a new growth approach, so called Ga pre-deposition (GaPD) method. In the GaPD, only Ga was supplied without nitrogen flux on a SiN/Si surface, resulting in the formation of Ga droplets. The Ga droplets were used as initial nucleation sites for the growth of GaN NWs. The GaN NWs with the average heights of 60.10 to 214.62 nm obtained by increasing growth time. The hexagonal-shaped top surfaces and facets were observed from the field-emission electron microscope images of GaN NWs, indicating that the NWs have the wurtzite (WZ) crystal structure. Strong peaks of GaN (0002) corresponding to WZ structures were also observed from double crystal x-ray diffraction rocking curves of the NW samples. At room temperature, free-exciton emissions were observed from GaN NWs with narrow linewidth broadenings, indicating to the formation of high-quality NWs.

References

  1. R. Meijers, T. Richter, R. Calarco, T. Stoica, H. P. Bochem, M. Marso, and H. Luth, J. Cryst. Growth 289, 381-386 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.117
  2. V. Consonni, A. Trampert, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 99, 033102 (2011). https://doi.org/10.1063/1.3610964
  3. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Luth, Appl. Phys. Lett. 90, 123117 (2007). https://doi.org/10.1063/1.2715119
  4. S. K. Wu, J. J. Su, and J. Y. Wang, Philos. Mag. 84, 1209 (2004). https://doi.org/10.1080/14786430310001646745
  5. G. Santana, O. de Melo, J. Aguilar-Hernandez, R. Mendoza-Perez, B. M. Monroy, A. Escamilla-Esquivel, M. Lopez-Lopez, F. de Moure, L. A. Hernandez, and G. Contreras-Puente, Materials 6, 1050-1060 (2013). https://doi.org/10.3390/ma6031050
  6. V. M. Kaganer, B. Jenichen, M. Ramsteiner, U. Jahn, C. Hauswald, F. Grosse, S. Fernandez-Garrido, and O. Brandt, J. Phys. D: Appl. Phys. 48, 385105 (2015). https://doi.org/10.1088/0022-3727/48/38/385105
  7. L. Dai, S. F. Liu, L. P. You, J. C. Zhang, and G. G. Qin, J. Phys. Condens. Matter 17, L445 (2005). https://doi.org/10.1088/0953-8984/17/43/L03
  8. V. P. Kladko, A. V. Kuchuk, H. V. Stanchu, N. V. Safriuk, A. E. Belyaev, A. Wierzbicka, M. Sobanska, K. Klosek, and Z. R. Zytkiewicz, J. Cryst. Growth 401, 347 (2014). https://doi.org/10.1016/j.jcrysgro.2014.01.042
  9. T. Auzelle, B. Haas, M. Den Hertog, J. L. Rouviere, B. Daudin, and B. Gayral, Appl. Phys. Lett. 107, 051904 (2015). https://doi.org/10.1063/1.4927826
  10. C. G. Bailey, S. M. Hubbard, D. V. Forbes, and R. P. Raffaelle, Appl. Phys. Lett. 95, 203110 (2009). https://doi.org/10.1063/1.3264967
  11. B. T. Liu, S. K. Guo, P. Ma, J. X. Wang, and J. M. Li, Chinese Phys. Lett. 34, 048101 (2017). https://doi.org/10.1088/0256-307X/34/4/048101
  12. J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan, J. Mater. Sci. Lett. 20, 757 (2001). https://doi.org/10.1023/A:1010987714781
  13. M. Matys and B. Adamowicz, J. Appl. Phys. 121, 065104 (2017). https://doi.org/10.1063/1.4975116
  14. A. H. Chin, T. S. Ahn, H. W. Li, S. Vaddiraju, C. J. Bardeen, C. Z. Ning, and M. K. Sunkara, Nano Lett. 7, 626 (2007). https://doi.org/10.1021/nl062524o
  15. O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, Appl. Phys. Lett. 97, 201907 (2010). https://doi.org/10.1063/1.3519980
  16. I. Shalish, H. Temkin, and V. Narayanamurti, Phys. Rev. B 69, 245401 (2004). https://doi.org/10.1103/PhysRevB.69.245401
  17. P. C. Upadhya, Q. M. Li, G. T. Wang, A. J. Fischer, A. J. Taylor, and R. P. Prasankumar, Semicond. Sci. Technol. 25, 024017 (2010). https://doi.org/10.1088/0268-1242/25/2/024017
  18. A. C. Ford, J. C. Ho, Y. L. Chueh, Y. C. Tseng, Z. Y. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360 (2009). https://doi.org/10.1021/nl803154m
  19. P. Offermans, M. Crego-Calama, and S. H. Brongersma, Nano Lett. 10, 2412 (2010). https://doi.org/10.1021/nl1005405
  20. S. Han, I. Choi, K. Lee, C. R. Lee, S. K. Lee, J. Hwang, D. C. Chung, and J. S. Kim, J. Electron. Mater. 47, 944 (2018). https://doi.org/10.1007/s11664-017-5849-2
  21. K. Lee, C. R. Lee, T. H. Chung, J. Park, J. Y. Leem, K. U. Jeong, and J. S. Kim, J. Cryst. Growth, 464, 138 (2017). https://doi.org/10.1016/j.jcrysgro.2017.02.003
  22. K. Lee, C. R. Lee, J. H. Lee, T. H. Chung, M. Y. Ryu, K. U. Jeong, J. Y. Leem, and J. S. Kim, Opt. Express, 24, 7743 (2016). https://doi.org/10.1364/OE.24.007743
  23. S. Nikzad, M. Hoenk, A. D. Jewell, J. J. Hennessy, A. G. Carver, T. J. Jones, T. M. Goodsall, E. T. Hamden, P. Suvarna, J. Bulmer, F. Shahedipour-Sandvik, E. Charbon, P. Padmanabhan, B. Hancock, and L. D. Bell, Sensors-Basel. 16, 927 (2016). https://doi.org/10.3390/s16060927
  24. J. H. Lee, W. W. Yang, D. W. Chang, S. S. Kwon, and W. I. Park, ACS Appl. Mater. Interfaces 10, 14170 (2018). https://doi.org/10.1021/acsami.8b02043
  25. S. Deshpande, T. Frost, L. F. Yan, S. Jahangir, A. Hazari, X. H. Liu, J. Mirecki-Millunchick, Z. T. Mi, and P. Bhattacharya, Nano Lett. 15, 1647 (2015). https://doi.org/10.1021/nl5041989
  26. S. H. Park, W. P. Hong, and J. J. Kim, Superlattice Microst. 109, 254 (2017). https://doi.org/10.1016/j.spmi.2017.05.007
  27. J. G. Rojas-Briseno, G. L. Miranda-Pedraza, and J. C. Martinez-Orozco, Phys. Status Solidi B 254, 1 (2017).
  28. C. B. Maliakkal, N. Hatui, R. D. Bapat, B. A. Chalke, A. A. Rahman, and A. Bhattacharya, Nano Lett. 16, 7632 (2016). https://doi.org/10.1021/acs.nanolett.6b03604
  29. T. R. Kuykendall, M. V. P. Altoe, D. F. Ogletree, and S. Aloni, Nano Lett. 14, 6767 (2014). https://doi.org/10.1021/nl502079v
  30. D. W. Park, S. G. Jeon, C. R. Lee, S. J. Lee, J. Y. Song, J. O. Kim, S. K. Noh, J. Y. Leem, and J. S. Kim, Sci. Rep. 5, 16652 (2015). https://doi.org/10.1038/srep16652
  31. Y. W. Wang, V. Schmidt, S. Senz, and U. Gosele, Nat. Nanotechnol. 1, 186 (2006). https://doi.org/10.1038/nnano.2006.133
  32. S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, J. Cryst. Growth 442, 8 (2016). https://doi.org/10.1016/j.jcrysgro.2016.02.028
  33. S. Fernandez-Garrido, V. M. Kaganer, K. K. Sabelfeld, T. Gotschke, J. Grandal, E. Calleja, L. Geelhaar, and O. Brandt, Nano Lett. 13, 3274 (2013). https://doi.org/10.1021/nl401483e
  34. R. S. Chen, H. Y. Tsai, C. H. Chan, Y. S. Huang, Y. T. Chen, K. H. Chen, and L. C. Chen, J. Electron. Mater. 44, 177 (2015). https://doi.org/10.1007/s11664-014-3457-y
  35. J. Ristic, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth, 310, 4035 (2008). https://doi.org/10.1016/j.jcrysgro.2008.05.057
  36. F. Schuster, S. Weiszer, M. Hetzl, A. Winnerl, J. A. Garrido, and M. Stutzmann, J. Appl. Phys. 116, 044307 (2014). https://doi.org/10.1063/1.4891448
  37. B. J. Godejohann, E. Ture, S. Muller, M. Prescher, L. Kirste, R. Aidam, V. Polyakov, P. Bruckner, S. Breuer, K. Kohler, R. Quay, and O. Ambacher, Phys. Status Solidi B 254, 1600715 (2017). https://doi.org/10.1002/pssb.201600715
  38. F. L. Gao, L. Wen, Z. Z. Xu, J. L. Han, Y. F. Yu, S. G. Zhang, and G. Q. Li, Small 13, 1603775 (2017). https://doi.org/10.1002/smll.201603775
  39. C. K. Xu, M. Kim, S. Y. Chung, J. Chun, and D. E. Kim, Chem. Phys. Lett. 398, 264 (2004). https://doi.org/10.1016/j.cplett.2004.09.066