Behavior of Plasma-doped Graphene upon High Temperature Vacuum Annealing

  • Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2018.07.30
  • Accepted : 2018.09.29
  • Published : 2018.09.30


Herein, we present the behavior of plasma-doped graphene upon high-temperature vacuum annealing. An ammonia plasma-treated graphene sample underwent vacuum annealing for 1 h at temperatures ranging from 100 to $500^{\circ}C$. According to Raman analysis, the structural healing of the plasma-treated sample is more pronounced at elevated annealing temperatures. The crystallite size of the plasma-treated sample increases from 13.87 to 29.15 nm after vacuum annealing. In addition, the doping level by plasma treatment reaches $2.2{\times}10^{12}cm^{-2}$ and maintains a value of $1.6{\times}10^{12}cm^{-2}$, even after annealing at $500^{\circ}C$, indicating high doping stability. A relatively large decrease in the pyrrolic bonding components is observed by X-ray photoelectron spectroscopy as compared to other configurations, such as pyridinic and amino bindings, after the annealing. This study indicates that high-vacuum annealing at elevated temperatures provides a method for the structural reorganization of plasma-treated graphene without a subsequent decrease in doping level.


Supported by : National Research Foundation of Korea (NRF)


  1. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
  2. E. Silva, A. R. B. Mendez, Z. M. Barnett, X. Jia, M. S. Dresselhaus, H. Terrones, M. Terrones, B. G. Sumpter, and V. Meunier, Phys. Rev. Lett 105, 045501 (2010).
  3. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
  4. X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang, and F. Huang, Nanotechnol. 23, 025704 (2012).
  5. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458 (2009) 877-880.
  6. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131 15939 (2009).
  7. Y. C. Lin, C. Y. Lin, and P. W. Chiu, Appl. Phys. Lett. 96, 133110 (2010).
  8. L. Xie, L. Jiao, and H. Dai, J. Am. Chem. Soc. 132, 14751 (2010).
  9. B. J Lee, D. H. Shin, S. Lee, and G. H. Jeong, Carbon 123, 174 (2017).
  10. S. I. Jo and G. H. Jeong, Appl. Sci. Converg. Technol. 24, 262 (2015).
  11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
  12. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008).
  13. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14059 (2000).
  14. A.C. Ferrari, Solid State Commun. 143, 47 (2007).
  15. O. A. Maslova, M. R. Ammar, G. Guimbretiere, J. N. Rouzaud, and P. Simon, Phy. Rev. B 85, 134205 (2012).
  16. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).
  17. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and K. Ensslin, Appl. Phys. Lett. 91, 241907 (2007).
  18. Y. P. Lin, Y. Ksari, D. Aubel, S. H. Garreau, G. Borvon, Y. Spiegel, L. Roux, L. Simon, and J. M. Thermlin, Carbon 100, 337 (2016).
  19. B. J. Lee and G. H. Joeng, Appl. Phys. A 116, 15 (2014).
  20. T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao, K. S. Kim, U. Wrstbauer, C. Gutierrez, D. Delongchamp, C. Jaye, D. Fisher, H. Ogasawara, L. G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hybertsen, and A. N. Pasupathy, Nano Lett. 12, 4025 (2012).
  21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M.I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).