DOI QR코드

DOI QR Code

Behavior of Plasma-doped Graphene upon High Temperature Vacuum Annealing

  • Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2018.07.30
  • Accepted : 2018.09.29
  • Published : 2018.09.30

Abstract

Herein, we present the behavior of plasma-doped graphene upon high-temperature vacuum annealing. An ammonia plasma-treated graphene sample underwent vacuum annealing for 1 h at temperatures ranging from 100 to $500^{\circ}C$. According to Raman analysis, the structural healing of the plasma-treated sample is more pronounced at elevated annealing temperatures. The crystallite size of the plasma-treated sample increases from 13.87 to 29.15 nm after vacuum annealing. In addition, the doping level by plasma treatment reaches $2.2{\times}10^{12}cm^{-2}$ and maintains a value of $1.6{\times}10^{12}cm^{-2}$, even after annealing at $500^{\circ}C$, indicating high doping stability. A relatively large decrease in the pyrrolic bonding components is observed by X-ray photoelectron spectroscopy as compared to other configurations, such as pyridinic and amino bindings, after the annealing. This study indicates that high-vacuum annealing at elevated temperatures provides a method for the structural reorganization of plasma-treated graphene without a subsequent decrease in doping level.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008). https://doi.org/10.1038/nnano.2008.58
  2. E. Silva, A. R. B. Mendez, Z. M. Barnett, X. Jia, M. S. Dresselhaus, H. Terrones, M. Terrones, B. G. Sumpter, and V. Meunier, Phys. Rev. Lett 105, 045501 (2010). https://doi.org/10.1103/PhysRevLett.105.045501
  3. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008). https://doi.org/10.1126/science.1150878
  4. X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang, and F. Huang, Nanotechnol. 23, 025704 (2012). https://doi.org/10.1088/0957-4484/23/2/025704
  5. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458 (2009) 877-880. https://doi.org/10.1038/nature07919
  6. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131 15939 (2009). https://doi.org/10.1021/ja907098f
  7. Y. C. Lin, C. Y. Lin, and P. W. Chiu, Appl. Phys. Lett. 96, 133110 (2010). https://doi.org/10.1063/1.3368697
  8. L. Xie, L. Jiao, and H. Dai, J. Am. Chem. Soc. 132, 14751 (2010). https://doi.org/10.1021/ja107071g
  9. B. J Lee, D. H. Shin, S. Lee, and G. H. Jeong, Carbon 123, 174 (2017). https://doi.org/10.1016/j.carbon.2017.07.059
  10. S. I. Jo and G. H. Jeong, Appl. Sci. Converg. Technol. 24, 262 (2015). https://doi.org/10.5757/ASCT.2015.24.6.262
  11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  12. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008). https://doi.org/10.1007/s12274-008-8036-1
  13. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14059 (2000). https://doi.org/10.1103/PhysRevB.61.14059
  14. A.C. Ferrari, Solid State Commun. 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
  15. O. A. Maslova, M. R. Ammar, G. Guimbretiere, J. N. Rouzaud, and P. Simon, Phy. Rev. B 85, 134205 (2012).
  16. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007). https://doi.org/10.1103/PhysRevLett.98.166802
  17. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and K. Ensslin, Appl. Phys. Lett. 91, 241907 (2007). https://doi.org/10.1063/1.2816262
  18. Y. P. Lin, Y. Ksari, D. Aubel, S. H. Garreau, G. Borvon, Y. Spiegel, L. Roux, L. Simon, and J. M. Thermlin, Carbon 100, 337 (2016). https://doi.org/10.1016/j.carbon.2015.12.094
  19. B. J. Lee and G. H. Joeng, Appl. Phys. A 116, 15 (2014).
  20. T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao, K. S. Kim, U. Wrstbauer, C. Gutierrez, D. Delongchamp, C. Jaye, D. Fisher, H. Ogasawara, L. G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hybertsen, and A. N. Pasupathy, Nano Lett. 12, 4025 (2012). https://doi.org/10.1021/nl301409h
  21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M.I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233