Excitation Intensity- and Temperature-Dependent Photoluminescence Study of InAs/GaAs Sub-monolayer-Quantum Dot

  • Kim, Minseak (Department of Physics, Yeungnam University) ;
  • Jo, Hyun Jun (Department of Physics, Yeungnam University) ;
  • Kim, Yeongho (Korea Research Institute of Standards and Science) ;
  • Lee, Seung Hyun (Department of Electrical and Computer Engineering, Ohio State University) ;
  • Lee, Sang Jun (Korea Research Institute of Standards and Science) ;
  • Honsberg, Christiana B. (School of Electrical, Computer and Energy Engineering, Arizona State University) ;
  • Kim, Jong Su (Department of Physics, Yeungnam University)
  • Received : 2018.07.16
  • Accepted : 2018.09.21
  • Published : 2018.09.30


Optical properties of InAs/GaAs submonolayer-quantum dot (SML-QD) have been investigated using excitation intensity ($I_{ex}$)- and temperature-dependent photoluminescence (PL). At a low temperature (13 K) strong PL was observed at 1.420 eV with a very narrow full-width at half maximum, of 7.09 meV. The results of the $I_{ex}$ dependence show that the PL intensities increase with increasing $I_{ex}$. The enhancement factors (k) of PL increment as a function of $I_{ex}$ are 3.3 and 1.22 at low and high $I_{ex}$ regime, respectively. The high k value at low $I_{ex}$, implies that the activation energy of the SML-QDs is low. The calculated activation energy of the SML-QDs from temperature dependence is 30 meV.


Supported by : National Research Foundation of Korea (NRF)


  1. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano. Lett. 11 (2011).
  2. I. S. Han, R. P. Smith, J. S. Kim, S. K. Noh, S. J. Lee, C. L. Lee, and J.-Y. Leem, Sol. Energy Mater. Sol. Cells 155 (2016).
  3. A. Marti, E. Antolin, E. Canovas, N. Lopez, and A. Luque, Proceedings of the 21st European Photovoltaic Solar Energy Conference, (Dresden, Germany, Sept. 4-8, 2006), pp. 99-102.
  4. A. Nasr, Optics & Laser Technology, 48 (2013). View at Google Scholar.
  5. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, and T. S. Jones, Phys. Rev. B 58 (1998).
  6. S. M. Willis, J. A. R. Dimmock, F. Tutu, H. Y. Liu, M. G. Peinado, H. E. Assender, A. A. R. Watt, and I. R. Sellers, Sol. Energy Mater. Sol. Cells 102 (2012).
  7. J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, ACS Photonics 3 (2016).
  8. S. Krishna, D. Zhu, J. Xu, K. K. Linder, O. Qasaimeh, P. Bhattacharya, and D. L. Huffaker, J. Appl. Phys. 86 (1999).
  9. Z. Xu, D. Birkedal, J. M. Hvam, Z. Zhao, Y.Liu, K. Yang, A. Kanjilal, and J. Sadowski, Appl. Phys. Lett. 82 (2003).
  10. T. D. Germann, A. Strittmatter, J. Pohl, U. W. Pohl, D. Bimberg, J. Rautiainen, M. Guina, and O. G. Okhotnikov, Appl. Phys. Lett. 92 (2008).
  11. I. L. Kresnikov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, Phys. Stat. Sol. (a) 183 (2001).
  12. N. N. Ledentsov and D. Bimberg, J. Crystal Growth 255 (2003).
  13. Y. Kim, K.-Y. Ban, and C. B. Honsberg, Appl. Phys. Lett. 106 (2015).
  14. T. Schmidt, K. Lischka, and W. Zulehner, Phys. Rev. B 45 (1992).
  15. E. C. Le Ru, J. Fack, and R. Murray, Phys. Rev. B, 67 (2003).
  16. K. S. Lee, G. Oh, E. K. Kim, and J. D. Song, Applied Science and Convergence Technology 26 (2017).