DOI QR코드

DOI QR Code

V2O5 Embedded All Transparent Metal Oxide Photoelectric Device

V2O5 기반의 금속 산화물 투명 광전소자

  • Kim, Sangyun (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Choi, Yourim (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Lee, Gyeong-Nam (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Kim, Joondong (Department of Electrical Engineering, Incheon National University)
  • Received : 2017.11.11
  • Accepted : 2018.04.30
  • Published : 2018.06.01

Abstract

All transparent metal oxide photoelectric device based on $V_2O_5$ was fabricated with structure of $V_2O_5/ZnO/ITO$ by magnetron sputtering system. $V_2O_5$ was deposited by reactive sputtering system with 4 inch vanadium target (purity 99.99%). In order to achieve p-n junction, p-type $V_2O_5$ was deposited onto the n-type ZnO layer. The ITO (indium tin oxide) was applied as the electron transporting layer for effective collection of the photo-induced electrons. Electrical and optical properties were analyzed. The Mott-Schottky analysis was applied to investigate the energy band diagram through the metal oxide layers. The $V_2O_5/ZnO/ITO$ photoelectric device has a rectifying ratio of 99.25 and photoresponse ratios of 1.6, 4.88 and 2.68 under different wavelength light illumination of 455 nm, 560 nm and 740 nm. Superior optical properties were realized with the high transmittance of average 70 % for visible light range. Transparent $V_2O_5$ layer absorbs the short wavelength light efficiently while passing the visible light. This research may provide a route for all-transparent photoelectric devices based on the adoption of the emerging p-type $V_2O_5$ metal oxide layer.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning

References

  1. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya,M. Hirano, and H. Hosono, Thin Solid Films, 486, 38, 2005. [DOI: http://dx.doi.org/10.1016/j.tsf.2004.11.223] https://doi.org/10.1016/j.tsf.2004.11.223
  2. C. J. Kim, S. W. Kim, J. H. Lee, J. S. Park, S. I. Kim, J. C. Park, E. H. Lee, J. C. Lee, Y. S. Park, J. H. Kim, S. T. Shin, and U. I. Chung, Appl. Phys. Lett., 95, 252103, 2009. [DOI: http://dx.doi.org/10.1063/1.3275801] https://doi.org/10.1063/1.3275801
  3. H. S. Kim, M. Patel, H. K. Kim, J. Y. Kim, M. K. Kwon, and J. D. Kim, Mater. Lett, 160, 305, 2015. [DOI: http://dx.doi.org/10.1016/j.matlet.2015.07.142] https://doi.org/10.1016/j.matlet.2015.07.142
  4. J. Liu, X. Wang, Q. Peng, and Y. Li, Adv. Mater. 17, 764, 2005. [DOI: http://dx.doi.org/10.1002/adma.200400993] https://doi.org/10.1002/adma.200400993
  5. D. Barreca, L. Armelao, F. Caccavale, V. Di Noto, A. Gregori, G. Rizzi, and E. Tondello, Chem. Mater. 12, 98, 2000. [DOI: http://dx.doi.org/10.1021/cm991095a] https://doi.org/10.1021/cm991095a
  6. H. Y. Yu, B. H. Kang, U. Pi, C. Park, S. Choi, and G. Kim, Appl. Phys. Lett. 86, 253102, 2005. [DOI: https://doi.org/10.1063/1.1954894] https://doi.org/10.1063/1.1954894
  7. R. Ostermann, D. Li, Y. Yin, J. McCann, and Y. Xia, Nano Lett. 6, 1297, 2006. [DOI: https://doi.org/10.1021/nl060928a] https://doi.org/10.1021/nl060928a
  8. Y. Wang, H. Zhang, W. Lim, J. Lin, and C. Wong, J. Mater. Chem. 21, 2362, 2011. [DOI: https://doi.org/10.1039/C0JM02727H] https://doi.org/10.1039/C0JM02727H
  9. D. Su and G. Wang, ACS Nano 7, 11218, 2013. [DOI: https://doi.org/10.1021/nn405014d] https://doi.org/10.1021/nn405014d
  10. V. Craciun, J. Elders, J.G.E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett., 65, 2963, 1994. [DOI: http://dx.doi.org/10.1063/1.112478] https://doi.org/10.1063/1.112478
  11. W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, and H. J. Lee, Appl. Phys. Lett., 85, 5052, 2004. [DOI: http://dx.doi.org/10.1063/1.1821648] https://doi.org/10.1063/1.1821648
  12. Kumar, M., Patel, M., Lee, G.-N., Kim, J., ACS Appl. Nano Mater, 2017. [DOI: http://dx.doi.org/10.1021/acsanm.7b00172]
  13. Kim, H. S., Kumar, M. D., Park, W. H., Patel, M., Kim, J., Sensors Actuators, A Phys. 253, 35, 2017. [DOI: http://dx.doi.org/10.1016/j.sna.2016.11.020] https://doi.org/10.1016/j.sna.2016.11.020
  14. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, J.Appl. Phys., 86, 6451, 1999. [DOI: http://dx.doi.org/10.1063/1.371708] https://doi.org/10.1063/1.371708
  15. T. Karasawa and Y. Miyata, Thin Solid Films, 223, 135, 1993. [DOI: http://dx.doi.org/10.1016/0040-6090(93)90737-A] https://doi.org/10.1016/0040-6090(93)90737-A
  16. S. Ishibashi, Y. Higuchi, Y. Ota, and K. Nakamura, J. Vac. Sci. Technol. A, 8, 1403, 1990. [DOI: http://dx.doi.org/10.1116/1.576890] https://doi.org/10.1116/1.576890