Electrical Characteristics of Organic Ferroelectric Memory Devices Fabricated on Elastomeric Substrate

엘라스토머 기판 상에 제작한 유기 강유전체 메모리 소자의 전기적 특성

  • Jung, Soon-Won (Division of Energy & Optical Technology Convergence, Cheongju University) ;
  • Ryu, Bong-Jo (Dept. of Mechanical Engineering, Hanbat University) ;
  • Koo, Kyung-Wan (Dept. of ICT Automotive Engineering, Hoseo University)
  • Received : 2018.04.24
  • Accepted : 2018.05.16
  • Published : 2018.06.01


We demonstrated memory thin-film transistors (MTFTs) with organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) and an amorphous oxide semiconducting indium gallium zinc oxide channel on the elastomeric substrate. The dielectric constant for the P(VDF-TrFE) thin film prepared on the elastomeric substrate was calculated to be 10 at a high frequency of 1 MHz. The voltage-dependent capacitance variations showed typical butterfly-shaped hysteresis behaviors owing to the polarization reversal in the film. The carrier mobility and memory on/off ratio of the MTFTs showed $15cm^2V^{-1}s^{-1}$ and $10^6$, respectively. This result indicates that the P(VDF-TrFE) film prepared on the elastomeric substrate exhibits ferroelectric natures. The fabricated MTFTs exhibited sufficiently encouraging device characteristics even on the elastomeric substrate to realize mechanically stretchable nonvolatile memory devices.


Supported by : 호서대학교


  1. M. Mardonova and Y. Choi, "Review of Wearable Device Technology and Its Applications to the Mining Industry", Energies, Vol. 11, p. 547, 2018.
  2. F. de Arriba-Perez, M. Caeiro-Rodriguez and J. M. Santos-Gago, "Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios", Sensors, Vol. 16, p. 1538, 2016.
  3. Y. Liu, M. Pharr and G. A. Salvatore, "Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring", ACS Nano, Vol. 11, pp. 9614-9635, 2017.
  4. M. Amjadi, S. Sheykhansari, B. J. Nelson and M. Sitti, "Recent Advances in Wearable Transdermal Delivery Systems", Adv. Mater., p. 1704530, 2018.
  5. D. Chen and Q. Pei, "Electronic Muscles and Skins: A Review of Soft Sensors and Actuators", Chem. Rev., Vol. 117, pp. 11239-11268, 2017.
  6. A. Romeo, Q. Liu, Z. Suo, and S. P. Lacour, "Elastomeric substrates with embedded stiff platforms for stretchable electronics", Appl. Phys. Lett., Vol. 102, pp. 131904-1-131094-5, 2013.
  7. S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu, M. Yun, X. Duan, and Y. H. Lee, "Transferred wrinkled $Al_2O_3$ for highly stretchable and transparent graphene-carbon nanotube transistors", Nat. Mater., Vol. 12, pp. 403-409, 2013.
  8. R. M. Erb, K. H. Cherenack, R. E. Stahel, R. Libanori, T. Kinkeldei, N. Munzenrieder, G. Troster, and A. R. Studart, "Locally Reinforced Polymer-Based Composites for Elastic Electronics", ACS Appl. Mater. Inter., Vol. 4, pp. 2860-2864, 2012.
  9. J.-S. Choi, C. W. Park, B. S. Na, S. C. Lim, S. S. Lee, K.-I. Cho, H. Y. Chu, J. B. Koo, S.-W. Jung, and S.-M. Yoon, "Stretchable Organic Thin-Film Transistors Fabricated on Wavy-Dimensional Elastomer Substrates Using Stiff-Island Structures", IEEE Electron Dev. Lett., Vol. 35, No. 7, pp. 762-764, 2014.
  10. S.-W. Jung, J.-S. Choi, J. B. Koo, C. W. Park, B. S. Na, J.-Y. Oh, S. S. Lee, and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Letters, Vol. 4, No. 1, pp. P1-P3, 2015.
  11. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh, W.-F. Su, Y.-J. Yang and Y.-F. Chen, "Stretchable organic memory: toward learnable and digitized stretchable electronic applications", NPG Asia Mater., Vol. 6, p. e87, 2014.
  12. D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon and D.-H. Kim, "Multifunctional wearable devices for diagnosis and therapy of movement disorders", Nat. Nanotechnol., Vol. 9, p. 397, 2014.
  13. D. Son, J. H. Koo, J.-K. Song, J. Kim, M. Lee, H. J. Shim, M. Park, M. Lee, J. H. Kim and D.-H. Kim, "Stretchable Carbon Nanotube Charge-Trap Floating-Gate Memory and Logic Devices for Wearable Electronics", ACS Nano, Vol. 9, p. 5585, 2015.
  14. M. A Khan, U. S. Bhansali and H. N. Alshareef, "High Performance Non Volatile Organic Ferroelectric Memory on Banknotes", Adv. Mater., Vol. 24, p. 2165, 2012.
  15. S.-W. Jung, S.-M. Yoon, S. Y. Kang, I.-K. You, J. B. Koo, K.-J. Baeg, Y.-Y. Noh, "Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics", Current Appl. Phys., Vol. 11, pp. S213-S218, 2011.
  16. S.-W. Jung, S.-M. Yoon, S. Y. Kang, and B.-G. Yu, "Properties of ferroelectric P(VDF-TrFE) 70/30 copolymer films as a gate dielectric", Integr. Ferroeletr., Vol. 100, Iss. 1, pp. 198-225, 2008.
  17. G.-G. Lee, E. Tokumitsu, S.-M. Yoon, Y. Fujisaki, J.-W. Yoon, H. Ishiwara, "The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoridetrifluoroethylene)", Appl. Phys. Lett., Vol. 99, pp. 012901-1-012901-3, 2011.