DOI QR코드

DOI QR Code

Observed Characteristics of Precipitation Timing during the Severe Hazes: Implication to Aerosol-Precipitation Interactions

연무 종류별 강수 발생시간 관측 특성 및 에어로졸-강수 연관성 분석

  • Eun, Seung-Hee (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Zhang, Wenting (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Park, Sung-Min (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University) ;
  • Park, Jin-Soo (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Kim, Jeong-Soo (Climate and Air Quality Research Department, National Institute of Environmental Research) ;
  • Park, Il-Soo (Korea-Latin America Green Convergence Center, Hankook University of Foreign Studies)
  • 은승희 (강릉원주대학교 대기환경과학과) ;
  • 장문정 (강릉원주대학교 대기환경과학과) ;
  • 박성민 (강릉원주대학교 대기환경과학과) ;
  • 김병곤 (강릉원주대학교 대기환경과학과) ;
  • 박진수 (국립환경과학원 기후대기연구부) ;
  • 김정수 (국립환경과학원 기후대기연구부) ;
  • 박일수 (한국외국어대학교 한.중남미 녹색융합센터)
  • Received : 2018.03.17
  • Accepted : 2018.05.31
  • Published : 2018.06.30

Abstract

Characteristics of precipitation response to enhanced aerosols have been investigated during the severe haze events observed in Korea for 2011 to 2016. All 6-years haze events are classified into long-range transported haze (LH: 31%), urban haze (UH: 28%), and yellow sand (YS: 18%) in order. Long-range transported one is mainly discussed in this study. Interestingly, both LH (68%) and YS (87%) appear to be more frequently accompanied with precipitation than UH (48%). We also found out the different timing of precipitation for LH and YS, respectively. The variations of precipitation frequency for the LH event tend to coincide with aerosol variations specifically in terms of temporal covariation, which is in contrast with YS. Increased aerosol loadings following precipitation for the YS event seems to be primarily controlled by large scale synoptic forcing. Meanwhile, aerosols for the LH event may be closely associated with precipitation longevity through changes in cloud microphysics such that enhanced aerosols can increase smaller cloud droplets and further extend light precipitation at weaker rate. Notably, precipitation persisted longer than operational weather forecast not considering detailed aerosol-cloud interactions, but the timescale was limited within a day. This result demonstrates active interactions between aerosols and meteorology such as probable modifications of cloud microphysics and precipitation, synoptic-induced dust transport, and precipitation-scavenging in Korea. Understanding of aerosol potential effect on precipitation will contribute to improving the performance of numerical weather model especially in terms of precipitation timing and location.

Acknowledgement

Supported by : 한국연구재단

References

  1. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  2. Bell, T. L., D. Rosenfeld, K. M. Kim, J. M. Yoo, M. I. Lee, and M. Hahnenberger, 2008: Midweek increase in U.S. summer rain and storm heights suggests air pollution invigorates rainstorms. J. Geophys. Res., 113, D02209, doi:10.1029/2007JD008623. https://doi.org/10.1029/2007JD008623
  3. Ding, A. J., and Coauthors, 2013: Intense atmospheric pollution modifies weather: A case of mixed biomass burning with fossil fuel combustion pollution in eastern China. Atmos. Chem. Phys., 13, 10545-10554, doi:10.5194/acp-13-10545-2013. https://doi.org/10.5194/acp-13-10545-2013
  4. Eun, S.-H., B.-G. Kim, K.-M. Lee, and J.-S. Park, 2016: Characteristics of recent severe haze events in Korea and possible inadvertent weather modification. Sci. Online Lett. Atmos., 12, 32-36, doi:10.2151/sola.2016-007. https://doi.org/10.2151/sola.2016-007
  5. Hyeon, D.-R., J.-M. Song, K.-J. Kim, W.-H. Kim, C.-H. Kang, and H.-J. Ko, 2014: Compositions of haze aerosol and their variation by inflow pathway of air mass at Gosan site in Jeju Island during 2012-2013. Anal. Sci. Technol., 27, 213-222 (in Korean with English abstract). https://doi.org/10.5806/AST.2014.27.4.213
  6. Jiang, M., J. Feng, Z. Li, R. Sun, Y.-T. Hou, Y. Zhu, B. Wan, J. Guo, and M. Cribb, 2017: Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast. Atmos. Chem. Phys., 17, 13967-13982, doi:10.5194/acp-17-13967-2017. https://doi.org/10.5194/acp-17-13967-2017
  7. Jo, H.-Y., and C.-H. Kim, 2010: Characteristics of East Asia synoptic meteorological conditions in association with haze phenomena. Atmosphere, 20, 161-172 (in Korean with English abstract).
  8. Jung, J., Y. J. Kim, K. Y. Lee, M. G. Cayetano, T. Batmunkh, J.-H. Koo, and J. Kim, 2010: Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008. Atmos. Chem. Phys., 10, 5391-5408, doi:10.5194/acp-10-5391-2010. https://doi.org/10.5194/acp-10-5391-2010
  9. Khain, A., N. Cohen, B. Lynn, and A. Pokrovsky, 2008: Possible aerosol effects on lightning activity and structure of hurricanes, J. Atmos. Sci., 65, 3652-3677. https://doi.org/10.1175/2008JAS2678.1
  10. Kim, B.-G., and S.-U. Park, 2001: Transport and evolution of a winter-time Yellow Sand observed in Korea. Atmos. Environ., 35, 3191-3201. https://doi.org/10.1016/S1352-2310(00)00469-6
  11. Kim, B.-G., and T.-Y. Kwon, 2006: Aerosol indirect studies derived from the ground-based remote sensings. J. Korean Soc. Atmos. Environ., 22, 235-247 (in Korean with English abstract).
  12. Kim, B.-G., J. S. Han, and S. U. Park, 2001: Transport of $SO_2$ and aerosol over the Yellow sea. Atmos. Environ., 35, 727-737. https://doi.org/10.1016/S1352-2310(00)00344-7
  13. Kim, H.-S., J.-B. Huh, P. K. Hopke, T. M. Holsen, and S.-M. Yi, 2007: Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos. Environ., 41, 6762-6770. https://doi.org/10.1016/j.atmosenv.2007.04.060
  14. Kim, Y. P., 2017: Research and Policy Directions against Ambient Fine Particles. J. Korean Soc. Atmos. Environ., 33, 191-204, doi:10.5572/KOSAE.2017.33.3.191. https://doi.org/10.5572/KOSAE.2017.33.3.191
  15. Korean Meteorological Society, and Korea Meteorological Administration, 2015: Atmospheric Sciences Terminology. Sigma Press, 1056 pp.
  16. Lee, K. H., Y. J. Kim, and M. J. Kim, 2006: Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004. Atmos. Environ., 40, 5146-5155. https://doi.org/10.1016/j.atmosenv.2006.03.050
  17. Lee, K.-M., S.-H. Eun, B.-G. Kim, W. Zhang, J.-S. Park, J.-Y. Ahn, K.-W. Chung, and I.-S. Park, 2017: Classification of various severe hazes and its optical properties in Korea for 2011-2013. Atmosphere, 27, 225-223, doi:10.14191/Atmos.2017.27.2.225 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2017.27.2.225
  18. Lee, S., C.-H. Ho, Y. G. Lee, H.-J. Choi, and C.-K. Song, 2013: Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16-20, 2008. Atmos. Environ., 77, 430-439, doi:10.1016/j.atmosenv.2013.05.006. https://doi.org/10.1016/j.atmosenv.2013.05.006
  19. Noh, Y. M., D. Muller, D. H. Shin, H. Lee, J. S. Jung, K. H. Lee, M. Cribb, Z. Li, and Y. J. Kim, 2009: Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea. Atmos. Environ., 43, 879-888, doi:10.1016/j.atmosenv.2008.10.058. https://doi.org/10.1016/j.atmosenv.2008.10.058
  20. Oh, H.-R., C.-H. Ho, J. Kim, D. Chen, S. Lee, Y.-S. Choi, L.-S. Chang, and C.-K. Song, 2015: Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmos. Environ., 109, 23-30, doi:10.1016/j.atmosenv.2015.03.005. https://doi.org/10.1016/j.atmosenv.2015.03.005
  21. Park, M. H., Y. P. Kim, C.-H. Kang, and S.-G. Shim, 2004: Aerosol composition change between 1992 and 2002 at Gosan, Korea. J. Geophys. Res., 109, D19S13, doi:10.1029/2003JD004110. https://doi.org/10.1029/2003JD004110
  22. Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: how do aerosol affect precipitation? Science, 321, 1309-1313. https://doi.org/10.1126/science.1160606
  23. Shi, H., S.-S. Lee, H.-W. Chun, H.-J. Song, Y.-C. Noh, and B.-J. Sohn, 2016: Optical properties of aerosols related to haze events over Seoul inferred from skyradiomter and satellite-borne measurements. Atmosphere, 26, 289-299, doi:10.14191/Atmos.2016.26.2.289. (in Korean with English abstract). https://doi.org/10.14191/Atmos.2016.26.2.289
  24. Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, doi:10.1029/2011RG000369. https://doi.org/10.1029/2011RG000369
  25. Uno, I., N. Sugimoto, A. Shimizu, K. Yumimoto, Y. Hara, and Z. Wang, 2014: Record heavy PM2.5 air pollution over China in January 2013: Vertical and horizontal dimensions. Sci. Online Lett. Atmos., 10, 136-140, doi:10.2151/sola.2014-028.
  26. Van den Heever, S. C., G. L. Stephens, and N. B. Wood, 2011: Aerosol indirect effects on tropical convection characteristics under conditions of radiative-convective equilibrium. J. Atmos. Sci., 68, 699-718, doi:10.1175/2010JAS3603.1. https://doi.org/10.1175/2010JAS3603.1