DOI QR코드

DOI QR Code

Uniqueness and Major Issues of Neuroethics

신경윤리의 독자성과 주요 쟁점들

  • Received : 2018.03.29
  • Accepted : 2018.03.30
  • Published : 2018.03.30

Abstract

This paper aims to examine the philosophical significance of neuroethics and its unique position within the cognitive paradigm, and to discuss major issues of neuroethics. Recent advances in neuroscience enable more direct access and intervention to human mind, which reduces the distinction between matter and mind and brings up new philosophical questions on human nature. Neuroethics takes interdisciplinary and integrative approach, in order to deal with the ethical issues related to new findings and technology of neuroscience that cannot be covered by the traditional legal and social systems. Some of the ethical issues of neuroscience overlap with the classical bioethics problems but majority of major issues are unique to neuroethics. These issues are mainly related to mind reading through the observation and decoding of brain activities and to cognitive enhancement through directly manipulating brain functions. Considering the current status and trends of Korean neuroscientific research, it is necessary to begin in-depth discussion of neuroethical issues with the collaboration among experts in related fields.

Acknowledgement

Supported by : 한국뇌연구원 KBRI, 부산대학교

References

  1. 설선혜, 이춘길 (2008). 신경윤리학: 뇌과학의 윤리적, 철학적, 법적, 사회적 문제. 한국심리학회지: 일반, 27(1), 1-41.
  2. 이보배 (2015. 11. 16.). '토막살인' 박춘풍 사이코패스 감정 뇌영상 촬영. 연합뉴스, http://www.yonhapnews.co.kr/bulletin/2015/11/16/0200000000AKR20151116194100004.HTML?input=1195m.
  3. Aspinwall, L. G., Brown, T. R., & Tabery, J. (2012). The double-edged sword: Does biomechanism increase or decrease judges' sentencing of psychopaths? Science, 337(6096), 846-849. https://doi.org/10.1126/science.1219569
  4. Bainbridge, W. S. (Ed.). (2013). Converging technologies for improving human performance: Nanotechnology, biotechnology, information technology and cognitive science. Springer Science & Business Media.
  5. Buckholtz, J. W., & Faigman, D. L. (2014). Promises, promises for neuroscience and law. Current Biology, 24(18), R861-R867. https://doi.org/10.1016/j.cub.2014.07.057
  6. Dunlop, B. et al. (2017). Functional Connectivity of the Subcallosal Cingulate Cortex And Differential Outcomes to Treatment With Cognitive-Behavioral Therapy or Antidepressant Medication for Major Depressive Disorder. The American Journal of Psychiatry, 174(6), 533-545. https://doi.org/10.1176/appi.ajp.2016.16050518
  7. Elsey, J., & Kindt, M. (2016). Manipulating human memory through reconsolidation: Ethical implications of a new therapeutic approach. AJOB Neuroscience, 7(4), 225-236. https://doi.org/10.1080/21507740.2016.1218377
  8. Farah, M. J. (2005). Neuroethics: the practical and the philosophical. Trends in Cognitive Science, 9(1), 34-40. https://doi.org/10.1016/j.tics.2004.12.001
  9. Farah, M. J. (2010). Neuroethics: An Introduction with Readings. MA: MIT Press.
  10. Farah, M. J., Hutchinson, J. B., Phelps, E. A., & Wagner, A. D. (2014). Functional MRI-based lie detection: scientific and societal challenges. Nature Reviews Neuroscience, 15(2), 123-131. https://doi.org/10.1038/nrn3665
  11. Gazzaniga, M. S. (2006). 윤리적 뇌 (2009), 뇌는 윤리적인가.(2015) (김효은 역) 서울: 바다출판사.
  12. Giordano, J. J., & Gordijn, B. (Eds.). (2010). Scientific and philosophical perspectives in neuroethics. Cambridge University Press.
  13. Glannon, W. (2007). Defining right and wrong in brain science. IL: University of Chicago Press.
  14. Glannon, W. (2006). Psychopharmacology and memory. Journal of Medical Ethics, 32, 74-78. https://doi.org/10.1136/jme.2005.012575
  15. Goering, S., & Yuste, R. (2016). On the Necessity of Ethical Guidelines for Novel Neurotechnologies. Cell, 167(4), 882-885. https://doi.org/10.1016/j.cell.2016.10.029
  16. Harmon-Jones, E., & Inzlicht, M. (2016). A brief overview of social neuroscience. Social Neuroscience: Biological Approaches to Social Psychology, 1.
  17. Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual review of neuroscience, 37, 435-456. https://doi.org/10.1146/annurev-neuro-062012-170325
  18. Hein, G., Morishima, Y., Leiberg, S., Sul, S., & Fehr, E. (2016). The brain's functional network architecture reveals human motives. Science, 351(6277), 1074-1078. https://doi.org/10.1126/science.aac7992
  19. Horikawa, T., & Kamitani, Y. (2017). Generic decoding of seen and imagined objects using hierarchical visual features. Nature communications, 8, 15037. https://doi.org/10.1038/ncomms15037
  20. Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science, 340(6132), 639-642. https://doi.org/10.1126/science.1234330
  21. Hu, L., & Iannetti, G. D. (2016). Painful issues in pain prediction. Trends in neurosciences, 39(4), 212-220. https://doi.org/10.1016/j.tins.2016.01.004
  22. Hyman, S. & Fenton, W. (2003). What are the right targets for psychopharmacolgy? Science, 299, 350-351. https://doi.org/10.1126/science.1077141
  23. Illes, J., & Bird, S. J. (2006). Neuroethics: a modern context for ethics in neuroscience. Trends in neurosciences, 29(9), 511-517. https://doi.org/10.1016/j.tins.2006.07.002
  24. Kadosh, R. C., Levy, N., O'Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22(4), R108-R111. https://doi.org/10.1016/j.cub.2012.01.013
  25. Kahnt, T. (2017). A decade of decoding reward-related fMRI signals and where we go from here. NeuroImage.
  26. Kragel, P. A., & LaBar, K. S. (2016). Decoding the Nature of Emotion in the Brain. Trends in cognitive sciences, 20(6), 444-455. https://doi.org/10.1016/j.tics.2016.03.011
  27. Lombera, S., & Illes, J. (2009). The international dimensions of neuroethics. Developing world bioethics, 9(2), 57-64. https://doi.org/10.1111/j.1471-8847.2008.00235.x
  28. Miller, G. (2010, May 13). fMRI lie detection gets its day in court. Science. Retrieved from http://www.sciencemag.org/news/2010/05/fmri-lie-detection-gets-its-day-court.
  29. Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72(5), 692-697. https://doi.org/10.1016/j.neuron.2011.11.001
  30. Poldrack, R. (2017). Neuroscience: The risks of reading the brain. Nature, 541(7636), 156-156. https://doi.org/10.1038/541156a
  31. Racine, E., Bar-Ilan, O., & Illes, J. (2005). fMRI in the public eye. Nature Review Neuroscience, 6(2), 159-164. https://doi.org/10.1038/nrn1609
  32. Racine, E., & Forlini, C. (2010). Cognitive enhancement, lifestyle choice or misuse of prescription drugs?. Neuroethics, 3(1), 1-4. https://doi.org/10.1007/s12152-008-9023-7
  33. Ritchie, J. B., Kaplan, D. M., & Klein, C. (2017). Decoding the brain: neural representation and the limits of multivariate pattern analysis in cognitive neuroscience. The British Journal for the Philosophy of Science.
  34. Sul, S., Güroğlu, B., Crone, E. A., & Chang, L. J. (2017). Medial prefrontal cortical thinning mediates shifts in other-regarding preferences during adolescence. Scientific reports, 7(1), 8510. https://doi.org/10.1038/s41598-017-08692-6
  35. Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: brain models in translational neuroimaging. Nature neuroscience, 20(3), 365-377. https://doi.org/10.1038/nn.4478
  36. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8(8), 665-670. https://doi.org/10.1038/nmeth.1635