DOI QR코드

DOI QR Code

Analysis of the Solvolysis of Anthraquinone-2-Carbonyl Chloride in Various Mixed Solvents

  • Koh, Han Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk Jin (Department of Science Education, Jeonju National University of Education)
  • Received : 2018.04.17
  • Accepted : 2018.05.23
  • Published : 2018.08.20

Abstract

The solvolyses of anthraquinone-2-carbonyl chloride (1) were studied kinetically in 27 pure and various mixed solvents. The analysis using the extended Grunwald-Winstein equation in the solvolyses of anthraquinone-2-carbonyl chloride (1) obtained the l value of $2.11{\pm}0.11$, the m value of $0.54{\pm}0.06$, and the correlation coefficient of 0.955. The solvolysis reaction of 1 might proceed via an associative $S_N2$ mechanism enhancing bond making than bond breaking in the transition state (TS). This interpretation is further supported by a relatively large solvent kinetic isotope effect (SKIE, 2.27).

Keywords

Anthraquinone-2-carbonyl chloride;Extended Grunwald-Winstein equation;Associative $S_N2$ mechanism;Solvent kinetic isotope effect

References

  1. (b) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  2. (b) Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  3. (c) Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  4. (d) Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425.
  5. (b) Kyong, J. B.; Rhu, C, J.; Kim, Y. G.; Kevill, D. N. J. Phys. Org. Chem. 2007, 20, 525. https://doi.org/10.1002/poc.1194
  6. (b) Hyne, J. B.; Will, R. J. Am. Chem. Soc. 1959, 81, 2371. https://doi.org/10.1021/ja01519a025
  7. (c) Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2. 1995, 2263.
  8. (d) Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2. 1997, 1721.
  9. (b) Lowry, T. M. J. Soc. Chem. Ind. 1923, 42, 43. https://doi.org/10.1002/jctb.5000420302
  10. (b) Liu, K. T.; Chen, I. J. Chem. Soc. Perkin Trans. 2, 2000, 893.
  11. (c) Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8470. https://doi.org/10.1021/ja00204a021
  12. (b) Lee, I.; Koh, H. J.; Park, Y. S.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2, 1993, 1575.
  13. (a) Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  14. (a) Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2. 1991, 296.
  15. (a) Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2. 2002, 240.
  16. Park, K. H.; Kevill, D. N. J. Phys. Org. Chem. 2012, 25, 2. https://doi.org/10.1002/poc.1851
  17. (a) Hudson, R. F.; Loveday, G. W. J. Chem. Soc. 1966, 766.
  18. Naito, K.; Miura, A.; Azuma, M. J. Am. Chem. Soc. 1991, 113, 6386. https://doi.org/10.1021/ja00017a005
  19. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987, Table 4-10.
  20. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2015, 36, 2429. https://doi.org/10.1002/bkcs.10465
  21. Alder, R. W.; Baker, R.; Brown, J. M. Mechanism in Organic Chemistry; Wiley-Interscience: London, 1971, Chap. 3.
  22. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  23. Kevill, D. N.; Ryu, J. H.; Neidermeyer, M. A.; Koyoshi, F.; D'Souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  24. (a) Bronsted, J. N. Einige Bemerkungen uber den begriff der Sauren und Basen. Rec. Trav. Chim. Pays-Bas. 1923, 42, 718.
  25. (a) Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  26. Lee, I.; Lee, W. H.; Lee, H. W. J. Phys. Org. Chem. 1993, 6, 361. https://doi.org/10.1002/poc.610060608
  27. Zhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
  28. (a) Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1927. https://doi.org/10.5012/bkcs.2008.29.10.1927