Study on the Effect of Curcumin on the Binding Interaction between DNA and Ethidium Ion with Fluorescence Anisotropy

DNA와 Ethidium Ion 사이의 결합반응에 미치는 Curcumin의 영향을 분석하기 위해 형광이방성 측정을 이용한 연구

  • Lee, Seongkyung (Department of Biochemistry, Chungnam National University) ;
  • Huh, Sungho (Department of Biochemistry, Chungnam National University)
  • 이성경 (충남대학교 자연과학대학 생화학과) ;
  • 허성호 (충남대학교 자연과학대학 생화학과)
  • Received : 2018.05.01
  • Accepted : 2018.05.28
  • Published : 2018.08.20



Fluorescence anisotropy;Quenching;Ethidium bromide;Curcumin;Intercalation


Supported by : 충남대학교


  1. Fried, M. G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 1989, 10, 366.
  2. Carey, J. Gel retardation. Methods Enzymol. 1991, 208, 103.
  3. Haq, I.; Ladbury, J. E.; Chowdhry, B. Z.; Jenkins, T. C.; Chaires, J. B. Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J. Mol. Biol. 1997, 271, 244.
  4. Hu, S. H.; Weisz, K.; James, T. L.; Shafer, R. H. H-NMR studies on d(GCTTAAGC)2 and its complex with berenil. Eur. J. Biochem. 1992, 204, 31.
  5. Feigon, J.; Denny, W. A.; Leupin, W.; Kearns, D. R. Interactions of antitumor drugs with natural DNA: $^1H$ NMR study of binding mode and kinetics. J. Med. Chem. 1984, 27, 450.
  6. Conte, M. R.; Jenkins, T. C.; Lane, A. N. Interaction of minor-groove-binding diamidine ligands with an asymmetric DNA duplex. NMR and molecular modelling studies. Eur. J. Biochem. FEBS 1995, 229, 433.
  7. Szabo, A.; Stolz, L.; Granzow, R. Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr. Opin. Struct. Biol. 1995, 5, 699.
  8. Baranovsky, S. F.; Bolotin, P. A.; Evstigneev, M. P.; Chernyshev, D. N. Interaction of ethidium bromide and caffeine with DNA in aqueous solution. J. Appl. Spectrosc. 2009, 76, 132.
  9. Larsen, R. W.; Jasuja, R.; Hetzler, R. K.; Muraoka, P. T.; Andrada, V. G.; Jameson, D. M. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys. J. 1996, 70, 443.
  10. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 3rd ed.; Springer Science & Business Media: Boston, MA, 2006.
  11. Lee, S.; Huh, S. Measuring Fluorescence Anisotropy as One of Very Useful Analytical Methods to Obtain Detailed Information of the Complex Binding Interaction. Bull. Korean Chem. Soc. 2017, 38, 406.
  12. Ameloot, M.; vandeVen, M.; Acuna, A. U.; Valeur, B. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 589.
  13. Sharma, R. A.; Gescher, A. J.; Steward, W. P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955.
  14. Nafisi, S.; Adelzadeh, M.; Norouzi, Z.; Sarbolouki, M. N. Curcumin binding to DNA and RNA. DNA Cell Biol. 2009, 28, 201.
  15. Burgos-Moron, E.; Calderon-Montano, J. M.; Salvador, J.; Robles, A.; Lopez-Lazaro, M. The dark side of curcumin. Int. J. Cancer 2010, 126, 1771.
  16. Li, X. L.; Hu, Y. J.; Mi, R.; Li, X. Y.; Li, P. Q.; Ouyang, Y. Spectroscopic exploring the affinities, characteristics, and mode of binding interaction of curcumin with DNA. Mol. Biol. Rep. 2013, 40, 4405.
  17. Koonammackal, M. V.; Nellipparambil, U. V.; Sudarsanakumar, C. Molecular dynamics simulations and binding free energy analysis of DNA minor groove complexes of curcumin. J. Mol. Model. 2011, 17, 2805.
  18. Kurien, B. T.; Dillon, S. P.; Dorri, Y.; D'Souza, A.; Scofield, R. H. Curcumin does not bind or intercalate into DNA and a note on the gray side of curcumin. Int. J. Cancer 2011, 128, 242.