DOI QR코드

DOI QR Code

온라인 뉴스에 대한 한국 대중의 감정 예측

Inference of Korean Public Sentiment from Online News

  • ;
  • 최순영 (고려대학교 컴퓨터학과) ;
  • 임희석 (고려대학교 컴퓨터학과)
  • 투고 : 2018.04.25
  • 심사 : 2018.07.20
  • 발행 : 2018.07.28

초록

온라인 뉴스는 기존의 신문을 대체하였고, 우리가 정보에 접근하고 공유하는 방법에 큰 변화를 가져왔다. 뉴스 웹사이트들은 사용자가 댓글을 남길 수 있는 기능을 오랜 시간동안 제공하였고, 그 중 몇몇 뉴스 웹사이트에서는 뉴스 기사들에 대한 사용자의 반응들을 크라우드소싱(crowdsource)하기 시작했다. 감정분석 분야에서는 텍스트에 반영된 감정과 반응들을 컴퓨팅적으로 모델링하기 위한 시도를 하고 있다. 본 연구에서는 뉴스 기사에 대한 반응들이 뉴스 본문과 수학적인 상관관계를 갖는지 밝히기 위해, 사용자로부터 생성된 다섯 가지의 감정 라벨(label)을 사용하여 10가지 카테고리(category)에 해당하는 100,000개 이상의 뉴스 기사들을 분석한다. 본 연구에서는 전처리과정이 최소한으로 필요하고 기계학습이 적용하지 않아도 되는 간단한 감정 분석 알고리즘(algorithm)을 제안한다. 우리는 이 모델이 한국어와 같은 형태론적으로 복잡한 언어에도 효과적이라는 것을 증명한다.

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. K. H. Lin, C. Yang & H. H. Chen. (2007). What Emotions do News Articles Trigger in their Readers? Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 38(6), 733-734.
  2. J. S. Song & S. W. Lee (2011). Automatic Construction of Positive/Negative Feature-Predicate Dictionary for Polarity Classification of Product Reviews. Journal of KIISE: Software and Applications, 38(3), 157-168.
  3. J. S. Myung, D. J Lee & S. G. Lee (2007). A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary. Proceedings of the 19th Annual Conference on Human and Cognitive Language Technology, 68-75.
  4. C. H. Jeong, J. H. Kim, Y. J. Jeon & H. J. Jeong (2017). Korean Sentiment Dictionary Based on the Reliability of Review Data. Journal of Korean Institute of Information Scientists and Engineers, 1965-1967.
  5. J. H. Seo, J. H Cho & J. T. Choi (2015). Design for Opinion Dictionary of Emotion Applying Rules for Antonym of the Korean Grammar. Journal of Advanced Information Technology and Convergence, 13(2), 109-117.
  6. X. Fang & J. Zhan. (2015). Sentiment Analysis Using Product Review Data. Journal of Big Data, 2(1), 5. https://doi.org/10.1186/s40537-015-0015-2
  7. B. Pang, L. Lee & S. Vaithyanahtan (2002). Thumbs Up?: Sentiment Classification using Machine Learning Techniques. Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, volume 10, 79-86.
  8. A. Pak & P. Paroubek (2010). Twitter as a Corpus for Sentiment Analysis and Opinion Mining. LREc, 10.
  9. L. Qu, G. Ifrim & G. Weikum (2010). The Bag-of-Opinions Method for Review Rating Prediction from Sparse Text Patterns. Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 913-921.
  10. S. Baccianella, A. Esuli & F. Sebastiani. (2009). Multi-Facet Rating of Product Reviews. European Conference on Information Retrieval, 461-472.
  11. J. S. Kim (2016). Emotion Prediction of Paragraph using Big Data Analysis. Korea Convergence Society, 14(11), 267-273.
  12. P. Katz, M. Singleton & R. Wicentowski. (2007). SWAT-MP: The SemEval-2007 Systems for Task 5 and Task 14. Proceedings of the 4th International Workshop on Semantic Evaluations. Association for Computational Linguistics, 308-313.
  13. C. Strapparava & R. Mihalcea (2007). SemEval-2007 Task 14: Affective Text. Proceedings of the 4th International Workshop on Semantic Evaluations. Association for Computational Linguistics, 70-74.
  14. Y. Rao, J. Lei, L. Wenyin, Q. Li & M. Chen (2014). Building Emotional Dictionary for Sentiment Analysis of Online News. World Wide Web, 17(4), 723-742. https://doi.org/10.1007/s11280-013-0221-9
  15. J. O. Kim, S. S Lee & H. S. Yong. (2011). Automatic Classification Scheme of Opinions Written in Korean. Journal of Korean Institute of Information Scientists and Engineers, 38(6), 423-428.
  16. Y. A. Heo, D. Y. Lee & G. G. Kim (2017). A System for Automatic Classification of Traditional Texts. Korea Convergence Society, 8(12), 39-47.
  17. Bao, S., Xu, S., Zhang, L., Yan, R., Su, Z., Han, D., Yu, Y (2011). Mining Social Emotions from Affective Text. IEEE Transactions on Knowledge and Data Engineering, 24, 1658-1670.
  18. S. Bao, S. Xu, L. Zhang, R. Yan, Z. Su, D. Han & Y. Yu, (2009). Joint Emotion-Topic Modeling for Social Affective Text Mining. Proceedings of the 9th IEEE International Conference on Data Mining, 699-704.